Enter a problem...
Trigonometry Examples
sin3(t)+cos3(t)+sin(t)cos2(t)+sin2(t)cos(t)=sin(t)+cos(t)
Step 1
Start on the left side.
sin3(t)+cos3(t)+sin(t)cos2(t)+sin2(t)cos(t)
Step 2
Step 2.1
Since both terms are perfect cubes, factor using the sum of cubes formula, a3+b3=(a+b)(a2-ab+b2) where a=sin(t) and b=cos(t).
(sin(t)+cos(t))(sin2(t)-sin(t)cos(t)+cos2(t))+sin(t)cos2(t)+sin2(t)cos(t)
Step 2.2
Simplify.
Step 2.2.1
Rearrange terms.
(sin(t)+cos(t))(-sin(t)cos(t)+sin2(t)+cos2(t))+sin(t)cos2(t)+sin2(t)cos(t)
Step 2.2.2
Apply pythagorean identity.
(sin(t)+cos(t))(-sin(t)cos(t)+1)+sin(t)cos2(t)+sin2(t)cos(t)
(sin(t)+cos(t))(-sin(t)cos(t)+1)+sin(t)cos2(t)+sin2(t)cos(t)
(sin(t)+cos(t))(-sin(t)cos(t)+1)+sin(t)cos2(t)+sin2(t)cos(t)
Step 3
Step 3.1
Simplify each term.
Step 3.1.1
Expand (sin(t)+cos(t))(-sin(t)cos(t)+1) using the FOIL Method.
Step 3.1.1.1
Apply the distributive property.
sin(t)(-sin(t)cos(t)+1)+cos(t)(-sin(t)cos(t)+1)+sin(t)cos(t)2+sin(t)2cos(t)
Step 3.1.1.2
Apply the distributive property.
sin(t)(-sin(t)cos(t))+sin(t)⋅1+cos(t)(-sin(t)cos(t)+1)+sin(t)cos(t)2+sin(t)2cos(t)
Step 3.1.1.3
Apply the distributive property.
sin(t)(-sin(t)cos(t))+sin(t)⋅1+cos(t)(-sin(t)cos(t))+cos(t)⋅1+sin(t)cos(t)2+sin(t)2cos(t)
sin(t)(-sin(t)cos(t))+sin(t)⋅1+cos(t)(-sin(t)cos(t))+cos(t)⋅1+sin(t)cos(t)2+sin(t)2cos(t)
Step 3.1.2
Simplify each term.
Step 3.1.2.1
Multiply sin(t)(-sin(t)cos(t)).
Step 3.1.2.1.1
Raise sin(t) to the power of 1.
-(sin(t)1sin(t))cos(t)+sin(t)⋅1+cos(t)(-sin(t)cos(t))+cos(t)⋅1+sin(t)cos(t)2+sin(t)2cos(t)
Step 3.1.2.1.2
Raise sin(t) to the power of 1.
-(sin(t)1sin(t)1)cos(t)+sin(t)⋅1+cos(t)(-sin(t)cos(t))+cos(t)⋅1+sin(t)cos(t)2+sin(t)2cos(t)
Step 3.1.2.1.3
Use the power rule aman=am+n to combine exponents.
-sin(t)1+1cos(t)+sin(t)⋅1+cos(t)(-sin(t)cos(t))+cos(t)⋅1+sin(t)cos(t)2+sin(t)2cos(t)
Step 3.1.2.1.4
Add 1 and 1.
-sin(t)2cos(t)+sin(t)⋅1+cos(t)(-sin(t)cos(t))+cos(t)⋅1+sin(t)cos(t)2+sin(t)2cos(t)
-sin(t)2cos(t)+sin(t)⋅1+cos(t)(-sin(t)cos(t))+cos(t)⋅1+sin(t)cos(t)2+sin(t)2cos(t)
Step 3.1.2.2
Multiply sin(t) by 1.
-sin(t)2cos(t)+sin(t)+cos(t)(-sin(t)cos(t))+cos(t)⋅1+sin(t)cos(t)2+sin(t)2cos(t)
Step 3.1.2.3
Multiply cos(t)(-sin(t)cos(t)).
Step 3.1.2.3.1
Raise cos(t) to the power of 1.
-sin(t)2cos(t)+sin(t)-sin(t)(cos(t)1cos(t))+cos(t)⋅1+sin(t)cos(t)2+sin(t)2cos(t)
Step 3.1.2.3.2
Raise cos(t) to the power of 1.
-sin(t)2cos(t)+sin(t)-sin(t)(cos(t)1cos(t)1)+cos(t)⋅1+sin(t)cos(t)2+sin(t)2cos(t)
Step 3.1.2.3.3
Use the power rule aman=am+n to combine exponents.
-sin(t)2cos(t)+sin(t)-sin(t)cos(t)1+1+cos(t)⋅1+sin(t)cos(t)2+sin(t)2cos(t)
Step 3.1.2.3.4
Add 1 and 1.
-sin(t)2cos(t)+sin(t)-sin(t)cos(t)2+cos(t)⋅1+sin(t)cos(t)2+sin(t)2cos(t)
-sin(t)2cos(t)+sin(t)-sin(t)cos(t)2+cos(t)⋅1+sin(t)cos(t)2+sin(t)2cos(t)
Step 3.1.2.4
Multiply cos(t) by 1.
-sin(t)2cos(t)+sin(t)-sin(t)cos(t)2+cos(t)+sin(t)cos(t)2+sin(t)2cos(t)
-sin(t)2cos(t)+sin(t)-sin(t)cos(t)2+cos(t)+sin(t)cos(t)2+sin(t)2cos(t)
-sin(t)2cos(t)+sin(t)-sin(t)cos(t)2+cos(t)+sin(t)cos(t)2+sin(t)2cos(t)
Step 3.2
Add -sin(t)2cos(t) and sin(t)2cos(t).
sin(t)-sin(t)cos(t)2+cos(t)+sin(t)cos(t)2+0
Step 3.3
Add sin(t) and 0.
-sin(t)cos(t)2+cos(t)+sin(t)cos(t)2+sin(t)
Step 3.4
Add -sin(t)cos(t)2 and sin(t)cos(t)2.
0+cos(t)+sin(t)
Step 3.5
Add 0 and cos(t).
cos(t)+sin(t)
cos(t)+sin(t)
Step 4
Rewrite cos(t)+sin(t) as sin(t)+cos(t).
sin(t)+cos(t)
Step 5
Because the two sides have been shown to be equivalent, the equation is an identity.
sin3(t)+cos3(t)+sin(t)cos2(t)+sin2(t)cos(t)=sin(t)+cos(t) is an identity