Enter a problem...
Trigonometry Examples
1-sin(2x)sin(x)-cos(x)=sin(x)-cos(x)1−sin(2x)sin(x)−cos(x)=sin(x)−cos(x)
Step 1
Start on the left side.
1-sin(2x)sin(x)-cos(x)1−sin(2x)sin(x)−cos(x)
Step 2
Multiply 1-sin(2x)sin(x)-cos(x)1−sin(2x)sin(x)−cos(x) by -sin(x)+cos(x)-sin(x)+cos(x)−sin(x)+cos(x)−sin(x)+cos(x).
1-sin(2x)sin(x)-cos(x)⋅-sin(x)+cos(x)-sin(x)+cos(x)1−sin(2x)sin(x)−cos(x)⋅−sin(x)+cos(x)−sin(x)+cos(x)
Step 3
Combine.
(1-sin(2x))(-sin(x)+cos(x))(sin(x)-cos(x))(-sin(x)+cos(x))(1−sin(2x))(−sin(x)+cos(x))(sin(x)−cos(x))(−sin(x)+cos(x))
Step 4
Step 4.1
Expand (1-sin(2x))(-sin(x)+cos(x))(1−sin(2x))(−sin(x)+cos(x)) using the FOIL Method.
Step 4.1.1
Apply the distributive property.
1(-sin(x)+cos(x))-sin(2x)(-sin(x)+cos(x))(sin(x)-cos(x))(-sin(x)+cos(x))1(−sin(x)+cos(x))−sin(2x)(−sin(x)+cos(x))(sin(x)−cos(x))(−sin(x)+cos(x))
Step 4.1.2
Apply the distributive property.
1(-sin(x))+1cos(x)-sin(2x)(-sin(x)+cos(x))(sin(x)-cos(x))(-sin(x)+cos(x))1(−sin(x))+1cos(x)−sin(2x)(−sin(x)+cos(x))(sin(x)−cos(x))(−sin(x)+cos(x))
Step 4.1.3
Apply the distributive property.
1(-sin(x))+1cos(x)-sin(2x)(-sin(x))-sin(2x)cos(x)(sin(x)-cos(x))(-sin(x)+cos(x))1(−sin(x))+1cos(x)−sin(2x)(−sin(x))−sin(2x)cos(x)(sin(x)−cos(x))(−sin(x)+cos(x))
1(-sin(x))+1cos(x)-sin(2x)(-sin(x))-sin(2x)cos(x)(sin(x)-cos(x))(-sin(x)+cos(x))1(−sin(x))+1cos(x)−sin(2x)(−sin(x))−sin(2x)cos(x)(sin(x)−cos(x))(−sin(x)+cos(x))
Step 4.2
Simplify each term.
-sin(x)+cos(x)+sin(2x)sin(x)-sin(2x)cos(x)(sin(x)-cos(x))(-sin(x)+cos(x))−sin(x)+cos(x)+sin(2x)sin(x)−sin(2x)cos(x)(sin(x)−cos(x))(−sin(x)+cos(x))
-sin(x)+cos(x)+sin(2x)sin(x)-sin(2x)cos(x)(sin(x)-cos(x))(-sin(x)+cos(x))−sin(x)+cos(x)+sin(2x)sin(x)−sin(2x)cos(x)(sin(x)−cos(x))(−sin(x)+cos(x))
Step 5
Step 5.1
Expand (sin(x)-cos(x))(-sin(x)+cos(x))(sin(x)−cos(x))(−sin(x)+cos(x)) using the FOIL Method.
Step 5.1.1
Apply the distributive property.
-sin(x)+cos(x)+sin(2x)sin(x)-sin(2x)cos(x)sin(x)(-sin(x)+cos(x))-cos(x)(-sin(x)+cos(x))−sin(x)+cos(x)+sin(2x)sin(x)−sin(2x)cos(x)sin(x)(−sin(x)+cos(x))−cos(x)(−sin(x)+cos(x))
Step 5.1.2
Apply the distributive property.
-sin(x)+cos(x)+sin(2x)sin(x)-sin(2x)cos(x)sin(x)(-sin(x))+sin(x)cos(x)-cos(x)(-sin(x)+cos(x))−sin(x)+cos(x)+sin(2x)sin(x)−sin(2x)cos(x)sin(x)(−sin(x))+sin(x)cos(x)−cos(x)(−sin(x)+cos(x))
Step 5.1.3
Apply the distributive property.
-sin(x)+cos(x)+sin(2x)sin(x)-sin(2x)cos(x)sin(x)(-sin(x))+sin(x)cos(x)-cos(x)(-sin(x))-cos(x)cos(x)−sin(x)+cos(x)+sin(2x)sin(x)−sin(2x)cos(x)sin(x)(−sin(x))+sin(x)cos(x)−cos(x)(−sin(x))−cos(x)cos(x)
-sin(x)+cos(x)+sin(2x)sin(x)-sin(2x)cos(x)sin(x)(-sin(x))+sin(x)cos(x)-cos(x)(-sin(x))-cos(x)cos(x)−sin(x)+cos(x)+sin(2x)sin(x)−sin(2x)cos(x)sin(x)(−sin(x))+sin(x)cos(x)−cos(x)(−sin(x))−cos(x)cos(x)
Step 5.2
Simplify and combine like terms.
-sin(x)+cos(x)+sin(2x)sin(x)-sin(2x)cos(x)-sin2(x)+2cos(x)sin(x)-cos2(x)−sin(x)+cos(x)+sin(2x)sin(x)−sin(2x)cos(x)−sin2(x)+2cos(x)sin(x)−cos2(x)
-sin(x)+cos(x)+sin(2x)sin(x)-sin(2x)cos(x)-sin2(x)+2cos(x)sin(x)-cos2(x)−sin(x)+cos(x)+sin(2x)sin(x)−sin(2x)cos(x)−sin2(x)+2cos(x)sin(x)−cos2(x)
Step 6
Step 6.1
Move -cos2(x)−cos2(x).
-sin(x)+cos(x)+sin(2x)sin(x)-sin(2x)cos(x)-sin2(x)-cos2(x)+2cos(x)sin(x)−sin(x)+cos(x)+sin(2x)sin(x)−sin(2x)cos(x)−sin2(x)−cos2(x)+2cos(x)sin(x)
Step 6.2
Factor -1−1 out of -sin2(x)−sin2(x).
-sin(x)+cos(x)+sin(2x)sin(x)-sin(2x)cos(x)-(sin2(x))-cos2(x)+2cos(x)sin(x)−sin(x)+cos(x)+sin(2x)sin(x)−sin(2x)cos(x)−(sin2(x))−cos2(x)+2cos(x)sin(x)
Step 6.3
Factor -1−1 out of -cos2(x)−cos2(x).
-sin(x)+cos(x)+sin(2x)sin(x)-sin(2x)cos(x)-(sin2(x))-(cos2(x))+2cos(x)sin(x)−sin(x)+cos(x)+sin(2x)sin(x)−sin(2x)cos(x)−(sin2(x))−(cos2(x))+2cos(x)sin(x)
Step 6.4
Factor -1−1 out of -(sin2(x))-(cos2(x))−(sin2(x))−(cos2(x)).
-sin(x)+cos(x)+sin(2x)sin(x)-sin(2x)cos(x)-(sin2(x)+cos2(x))+2cos(x)sin(x)−sin(x)+cos(x)+sin(2x)sin(x)−sin(2x)cos(x)−(sin2(x)+cos2(x))+2cos(x)sin(x)
Step 6.5
Apply pythagorean identity.
-sin(x)+cos(x)+sin(2x)sin(x)-sin(2x)cos(x)-1⋅1+2cos(x)sin(x)−sin(x)+cos(x)+sin(2x)sin(x)−sin(2x)cos(x)−1⋅1+2cos(x)sin(x)
Step 6.6
Simplify the numerator.
Step 6.6.1
Reorder terms.
sin(x)sin(2x)-cos(x)sin(2x)-sin(x)+cos(x)-1⋅1+2cos(x)sin(x)sin(x)sin(2x)−cos(x)sin(2x)−sin(x)+cos(x)−1⋅1+2cos(x)sin(x)
Step 6.6.2
Factor out the greatest common factor from each group.
Step 6.6.2.1
Group the first two terms and the last two terms.
(sin(x)sin(2x)-cos(x)sin(2x))-sin(x)+cos(x)-1⋅1+2cos(x)sin(x)(sin(x)sin(2x)−cos(x)sin(2x))−sin(x)+cos(x)−1⋅1+2cos(x)sin(x)
Step 6.6.2.2
Factor out the greatest common factor (GCF) from each group.
sin(2x)(sin(x)-cos(x))-(sin(x)-cos(x))-1⋅1+2cos(x)sin(x)sin(2x)(sin(x)−cos(x))−(sin(x)−cos(x))−1⋅1+2cos(x)sin(x)
sin(2x)(sin(x)-cos(x))-(sin(x)-cos(x))-1⋅1+2cos(x)sin(x)sin(2x)(sin(x)−cos(x))−(sin(x)−cos(x))−1⋅1+2cos(x)sin(x)
Step 6.6.3
Factor the polynomial by factoring out the greatest common factor, sin(x)-cos(x)sin(x)−cos(x).
(sin(x)-cos(x))(sin(2x)-1)-1⋅1+2cos(x)sin(x)(sin(x)−cos(x))(sin(2x)−1)−1⋅1+2cos(x)sin(x)
(sin(x)-cos(x))(sin(2x)-1)-1⋅1+2cos(x)sin(x)(sin(x)−cos(x))(sin(2x)−1)−1⋅1+2cos(x)sin(x)
Step 6.7
Simplify the denominator.
Step 6.7.1
Multiply -1−1 by 11.
(sin(x)-cos(x))(sin(2x)-1)-1+2cos(x)sin(x)(sin(x)−cos(x))(sin(2x)−1)−1+2cos(x)sin(x)
Step 6.7.2
Reorder 2cos(x)2cos(x) and sin(x)sin(x).
(sin(x)-cos(x))(sin(2x)-1)-1+sin(x)(2cos(x))(sin(x)−cos(x))(sin(2x)−1)−1+sin(x)(2cos(x))
Step 6.7.3
Reorder sin(x)sin(x) and 22.
(sin(x)-cos(x))(sin(2x)-1)-1+2⋅sin(x)cos(x)(sin(x)−cos(x))(sin(2x)−1)−1+2⋅sin(x)cos(x)
Step 6.7.4
Apply the sine double-angle identity.
(sin(x)-cos(x))(sin(2x)-1)-1+sin(2x)(sin(x)−cos(x))(sin(2x)−1)−1+sin(2x)
(sin(x)-cos(x))(sin(2x)-1)-1+sin(2x)(sin(x)−cos(x))(sin(2x)−1)−1+sin(2x)
Step 6.8
Cancel the common factor of sin(2x)-1sin(2x)−1 and -1+sin(2x)−1+sin(2x).
Step 6.8.1
Reorder terms.
(sin(x)-cos(x))(-1+sin(2x))-1+sin(2x)(sin(x)−cos(x))(−1+sin(2x))−1+sin(2x)
Step 6.8.2
Cancel the common factor.
(sin(x)-cos(x))(-1+sin(2x))-1+sin(2x)
Step 6.8.3
Divide sin(x)-cos(x) by 1.
sin(x)-cos(x)
sin(x)-cos(x)
sin(x)-cos(x)
Step 7
Because the two sides have been shown to be equivalent, the equation is an identity.
1-sin(2x)sin(x)-cos(x)=sin(x)-cos(x) is an identity