Trigonometry Examples

Expand Using Sum/Difference Formulas sin((17pi)/12)
sin(17π12)sin(17π12)
Step 1
First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, 17π12 can be split into 7π6+π4.
sin(7π6+π4)
Step 2
Use the sum formula for sine to simplify the expression. The formula states that sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
sin(7π6)cos(π4)+cos(7π6)sin(π4)
Step 3
Remove parentheses.
sin(7π6)cos(π4)+cos(7π6)sin(π4)
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the third quadrant.
-sin(π6)cos(π4)+cos(7π6)sin(π4)
Step 4.2
The exact value of sin(π6) is 12.
-12cos(π4)+cos(7π6)sin(π4)
Step 4.3
The exact value of cos(π4) is 22.
-1222+cos(7π6)sin(π4)
Step 4.4
Multiply -1222.
Tap for more steps...
Step 4.4.1
Multiply 22 by 12.
-222+cos(7π6)sin(π4)
Step 4.4.2
Multiply 2 by 2.
-24+cos(7π6)sin(π4)
-24+cos(7π6)sin(π4)
Step 4.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
-24-cos(π6)sin(π4)
Step 4.6
The exact value of cos(π6) is 32.
-24-32sin(π4)
Step 4.7
The exact value of sin(π4) is 22.
-24-3222
Step 4.8
Multiply -3222.
Tap for more steps...
Step 4.8.1
Multiply 22 by 32.
-24-2322
Step 4.8.2
Combine using the product rule for radicals.
-24-2322
Step 4.8.3
Multiply 2 by 3.
-24-622
Step 4.8.4
Multiply 2 by 2.
-24-64
-24-64
-24-64
Step 5
Simplify.
Tap for more steps...
Step 5.1
Combine the numerators over the common denominator.
-2-64
Step 5.2
Factor -1 out of -2.
-(2)-64
Step 5.3
Factor -1 out of -6.
-(2)-(6)4
Step 5.4
Factor -1 out of -(2)-(6).
-(2+6)4
Step 5.5
Simplify the expression.
Tap for more steps...
Step 5.5.1
Rewrite -(2+6) as -1(2+6).
-1(2+6)4
Step 5.5.2
Move the negative in front of the fraction.
-2+64
-2+64
-2+64
Step 6
The result can be shown in multiple forms.
Exact Form:
-2+64
Decimal Form:
-0.96592582
 [x2  12  π  xdx ]