Enter a problem...
Trigonometry Examples
sin(17π12)sin(17π12)
Step 1
First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, 17π12 can be split into 7π6+π4.
sin(7π6+π4)
Step 2
Use the sum formula for sine to simplify the expression. The formula states that sin(A+B)=sin(A)cos(B)+cos(A)sin(B).
sin(7π6)cos(π4)+cos(7π6)sin(π4)
Step 3
Remove parentheses.
sin(7π6)cos(π4)+cos(7π6)sin(π4)
Step 4
Step 4.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the third quadrant.
-sin(π6)cos(π4)+cos(7π6)sin(π4)
Step 4.2
The exact value of sin(π6) is 12.
-12cos(π4)+cos(7π6)sin(π4)
Step 4.3
The exact value of cos(π4) is √22.
-12⋅√22+cos(7π6)sin(π4)
Step 4.4
Multiply -12⋅√22.
Step 4.4.1
Multiply √22 by 12.
-√22⋅2+cos(7π6)sin(π4)
Step 4.4.2
Multiply 2 by 2.
-√24+cos(7π6)sin(π4)
-√24+cos(7π6)sin(π4)
Step 4.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
-√24-cos(π6)sin(π4)
Step 4.6
The exact value of cos(π6) is √32.
-√24-√32sin(π4)
Step 4.7
The exact value of sin(π4) is √22.
-√24-√32⋅√22
Step 4.8
Multiply -√32⋅√22.
Step 4.8.1
Multiply √22 by √32.
-√24-√2√32⋅2
Step 4.8.2
Combine using the product rule for radicals.
-√24-√2⋅32⋅2
Step 4.8.3
Multiply 2 by 3.
-√24-√62⋅2
Step 4.8.4
Multiply 2 by 2.
-√24-√64
-√24-√64
-√24-√64
Step 5
Step 5.1
Combine the numerators over the common denominator.
-√2-√64
Step 5.2
Factor -1 out of -√2.
-(√2)-√64
Step 5.3
Factor -1 out of -√6.
-(√2)-(√6)4
Step 5.4
Factor -1 out of -(√2)-(√6).
-(√2+√6)4
Step 5.5
Simplify the expression.
Step 5.5.1
Rewrite -(√2+√6) as -1(√2+√6).
-1(√2+√6)4
Step 5.5.2
Move the negative in front of the fraction.
-√2+√64
-√2+√64
-√2+√64
Step 6
The result can be shown in multiple forms.
Exact Form:
-√2+√64
Decimal Form:
-0.96592582…