Enter a problem...
Trigonometry Examples
2sin(x)cos3(x)+2sin3(x)cos(x)2sin(x)cos3(x)+2sin3(x)cos(x)
Step 1
Given the expression asin(x)+bcos(x)asin(x)+bcos(x), find the values of kk and θθ.
k=√a2+b2k=√a2+b2
θ=tan-1(ba)θ=tan−1(ba)
Step 2
Step 2.1
Raise 22 to the power of 22.
k=√4+(2)2k=√4+(2)2
Step 2.2
Raise 22 to the power of 22.
k=√4+4k=√4+4
Step 2.3
Add 44 and 44.
k=√8k=√8
Step 2.4
Rewrite 88 as 22⋅222⋅2.
Step 2.4.1
Factor 44 out of 88.
k=√4(2)k=√4(2)
Step 2.4.2
Rewrite 44 as 2222.
k=√22⋅2k=√22⋅2
k=√22⋅2k=√22⋅2
Step 2.5
Pull terms out from under the radical.
k=2√2k=2√2
k=2√2k=2√2
Step 3
Find the value for θθ by substituting the coefficients from 2sin(x)cos3(x)2sin(x)cos3(x) and 2sin3(x)cos(x)2sin3(x)cos(x) into θ=tan-1(ba)θ=tan−1(ba).
θ=tan-1(22)θ=tan−1(22)
Step 4
Divide 22 by 22.
tan-1(1)tan−1(1)
Step 5
Linear combinations of trigonometric functions dictate that asin(x)+bcos(x)=ksin(x+θ)asin(x)+bcos(x)=ksin(x+θ). Substitute the values of kk and θθ.
2√2sin(x+π4)2√2sin(x+π4)