Trigonometry Examples

Combine 2sin(x)cos(x)^3+2sin(x)^3cos(x)
2sin(x)cos3(x)+2sin3(x)cos(x)2sin(x)cos3(x)+2sin3(x)cos(x)
Step 1
Given the expression asin(x)+bcos(x)asin(x)+bcos(x), find the values of kk and θθ.
k=a2+b2k=a2+b2
θ=tan-1(ba)θ=tan−1(ba)
Step 2
Calculate the value for kk by substituting the coefficients from 2sin(x)cos3(x)2sin(x)cos3(x) and 2sin3(x)cos(x)2sin3(x)cos(x) into k=a2+b2k=a2+b2.
Tap for more steps...
Step 2.1
Raise 22 to the power of 22.
k=4+(2)2k=4+(2)2
Step 2.2
Raise 22 to the power of 22.
k=4+4k=4+4
Step 2.3
Add 44 and 44.
k=8k=8
Step 2.4
Rewrite 88 as 222222.
Tap for more steps...
Step 2.4.1
Factor 44 out of 88.
k=4(2)k=4(2)
Step 2.4.2
Rewrite 44 as 2222.
k=222k=222
k=222k=222
Step 2.5
Pull terms out from under the radical.
k=22k=22
k=22k=22
Step 3
Find the value for θθ by substituting the coefficients from 2sin(x)cos3(x)2sin(x)cos3(x) and 2sin3(x)cos(x)2sin3(x)cos(x) into θ=tan-1(ba)θ=tan−1(ba).
θ=tan-1(22)θ=tan−1(22)
Step 4
Divide 22 by 22.
tan-1(1)tan−1(1)
Step 5
Linear combinations of trigonometric functions dictate that asin(x)+bcos(x)=ksin(x+θ)asin(x)+bcos(x)=ksin(x+θ). Substitute the values of kk and θθ.
22sin(x+π4)22sin(x+π4)
 [x2  12  π  xdx ]  x2  12  π  xdx