Enter a problem...
Trigonometry Examples
(−3,π4)
Step 1
Use the conversion formulas to convert from polar coordinates to rectangular coordinates.
x=rcosθ
y=rsinθ
Step 2
Substitute in the known values of r=−3 and θ=π4 into the formulas.
x=(−3)cos(π4)
y=(−3)sin(π4)
Step 3
The exact value of cos(π4) is √22.
x=−3√22
y=(−3)sin(π4)
Step 4
Combine −3 and √22.
x=−3√22
y=(−3)sin(π4)
Step 5
Move the negative in front of the fraction.
x=−3√22
y=(−3)sin(π4)
Step 6
The exact value of sin(π4) is √22.
x=−3√22
y=−3√22
Step 7
Combine −3 and √22.
x=−3√22
y=−3√22
Step 8
Move the negative in front of the fraction.
x=−3√22
y=−3√22
Step 9
The rectangular representation of the polar point (−3,π4) is (−3√22,−3√22).
(−3√22,−3√22)