Trigonometry Examples

Find the Domain and Range f(x)=2tan(3x+pi)
f(x)=2tan(3x+π)f(x)=2tan(3x+π)
Step 1
Set the argument in tan(3x+π)tan(3x+π) equal to π2+πnπ2+πn to find where the expression is undefined.
3x+π=π2+πn3x+π=π2+πn, for any integer nn
Step 2
Solve for xx.
Tap for more steps...
Step 2.1
Move all terms not containing xx to the right side of the equation.
Tap for more steps...
Step 2.1.1
Subtract ππ from both sides of the equation.
3x=π2+πn-π3x=π2+πnπ
Step 2.1.2
To write -ππ as a fraction with a common denominator, multiply by 2222.
3x=πn+π2-π223x=πn+π2π22
Step 2.1.3
Combine -ππ and 2222.
3x=πn+π2+-π223x=πn+π2+π22
Step 2.1.4
Combine the numerators over the common denominator.
3x=πn+π-π223x=πn+ππ22
Step 2.1.5
Simplify each term.
Tap for more steps...
Step 2.1.5.1
Simplify the numerator.
Tap for more steps...
Step 2.1.5.1.1
Multiply 22 by -11.
3x=πn+π-2π23x=πn+π2π2
Step 2.1.5.1.2
Subtract 2π2π from ππ.
3x=πn+-π23x=πn+π2
3x=πn+-π23x=πn+π2
Step 2.1.5.2
Move the negative in front of the fraction.
3x=πn-π23x=πnπ2
3x=πn-π23x=πnπ2
3x=πn-π23x=πnπ2
Step 2.2
Divide each term in 3x=πn-π23x=πnπ2 by 33 and simplify.
Tap for more steps...
Step 2.2.1
Divide each term in 3x=πn-π23x=πnπ2 by 33.
3x3=πn3+-π233x3=πn3+π23
Step 2.2.2
Simplify the left side.
Tap for more steps...
Step 2.2.2.1
Cancel the common factor of 33.
Tap for more steps...
Step 2.2.2.1.1
Cancel the common factor.
3x3=πn3+-π23
Step 2.2.2.1.2
Divide x by 1.
x=πn3+-π23
x=πn3+-π23
x=πn3+-π23
Step 2.2.3
Simplify the right side.
Tap for more steps...
Step 2.2.3.1
Simplify each term.
Tap for more steps...
Step 2.2.3.1.1
Multiply the numerator by the reciprocal of the denominator.
x=πn3-π213
Step 2.2.3.1.2
Multiply -π213.
Tap for more steps...
Step 2.2.3.1.2.1
Multiply 13 by π2.
x=πn3-π32
Step 2.2.3.1.2.2
Multiply 3 by 2.
x=πn3-π6
x=πn3-π6
x=πn3-π6
x=πn3-π6
x=πn3-π6
x=πn3-π6
Step 3
The domain is all values of x that make the expression defined.
Set-Builder Notation:
{x|xπn3-π6}, for any integer n
Step 4
The range is the set of all valid y values. Use the graph to find the range.
Interval Notation:
(-,)
Set-Builder Notation:
{y|y}
Step 5
Determine the domain and range.
Domain: {x|xπn3-π6}, for any integer n
Range: (-,),{y|y}
Step 6
 [x2  12  π  xdx ]