Enter a problem...
Trigonometry Examples
f(x)=2tan(3x+π)f(x)=2tan(3x+π)
Step 1
Set the argument in tan(3x+π)tan(3x+π) equal to π2+πnπ2+πn to find where the expression is undefined.
3x+π=π2+πn3x+π=π2+πn, for any integer nn
Step 2
Step 2.1
Move all terms not containing xx to the right side of the equation.
Step 2.1.1
Subtract ππ from both sides of the equation.
3x=π2+πn-π3x=π2+πn−π
Step 2.1.2
To write -π−π as a fraction with a common denominator, multiply by 2222.
3x=πn+π2-π⋅223x=πn+π2−π⋅22
Step 2.1.3
Combine -π−π and 2222.
3x=πn+π2+-π⋅223x=πn+π2+−π⋅22
Step 2.1.4
Combine the numerators over the common denominator.
3x=πn+π-π⋅223x=πn+π−π⋅22
Step 2.1.5
Simplify each term.
Step 2.1.5.1
Simplify the numerator.
Step 2.1.5.1.1
Multiply 22 by -1−1.
3x=πn+π-2π23x=πn+π−2π2
Step 2.1.5.1.2
Subtract 2π2π from ππ.
3x=πn+-π23x=πn+−π2
3x=πn+-π23x=πn+−π2
Step 2.1.5.2
Move the negative in front of the fraction.
3x=πn-π23x=πn−π2
3x=πn-π23x=πn−π2
3x=πn-π23x=πn−π2
Step 2.2
Divide each term in 3x=πn-π23x=πn−π2 by 33 and simplify.
Step 2.2.1
Divide each term in 3x=πn-π23x=πn−π2 by 33.
3x3=πn3+-π233x3=πn3+−π23
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Cancel the common factor of 33.
Step 2.2.2.1.1
Cancel the common factor.
3x3=πn3+-π23
Step 2.2.2.1.2
Divide x by 1.
x=πn3+-π23
x=πn3+-π23
x=πn3+-π23
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
Simplify each term.
Step 2.2.3.1.1
Multiply the numerator by the reciprocal of the denominator.
x=πn3-π2⋅13
Step 2.2.3.1.2
Multiply -π2⋅13.
Step 2.2.3.1.2.1
Multiply 13 by π2.
x=πn3-π3⋅2
Step 2.2.3.1.2.2
Multiply 3 by 2.
x=πn3-π6
x=πn3-π6
x=πn3-π6
x=πn3-π6
x=πn3-π6
x=πn3-π6
Step 3
The domain is all values of x that make the expression defined.
Set-Builder Notation:
{x|x≠πn3-π6}, for any integer n
Step 4
The range is the set of all valid y values. Use the graph to find the range.
Interval Notation:
(-∞,∞)
Set-Builder Notation:
{y|y∈ℝ}
Step 5
Determine the domain and range.
Domain: {x|x≠πn3-π6}, for any integer n
Range: (-∞,∞),{y|y∈ℝ}
Step 6