Trigonometry Examples

Convert to Polar Coordinates (-( square root of 3)/2,1/2)
(-32,12)
Step 1
Convert from rectangular coordinates (x,y) to polar coordinates (r,θ) using the conversion formulas.
r=x2+y2
θ=tan-1(yx)
Step 2
Replace x and y with the actual values.
r=(-32)2+(12)2
θ=tan-1(yx)
Step 3
Find the magnitude of the polar coordinate.
Tap for more steps...
Step 3.1
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 3.1.1
Apply the product rule to -32.
r=(-1)2(32)2+(12)2
θ=tan-1(yx)
Step 3.1.2
Apply the product rule to 32.
r=(-1)2(3222)+(12)2
θ=tan-1(yx)
r=(-1)2(3222)+(12)2
θ=tan-1(yx)
Step 3.2
Simplify the expression.
Tap for more steps...
Step 3.2.1
Raise -1 to the power of 2.
r=1(3222)+(12)2
θ=tan-1(yx)
Step 3.2.2
Multiply 3222 by 1.
r=3222+(12)2
θ=tan-1(yx)
r=3222+(12)2
θ=tan-1(yx)
Step 3.3
Rewrite 32 as 3.
Tap for more steps...
Step 3.3.1
Use nax=axn to rewrite 3 as 312.
r=(312)222+(12)2
θ=tan-1(yx)
Step 3.3.2
Apply the power rule and multiply exponents, (am)n=amn.
r=312222+(12)2
θ=tan-1(yx)
Step 3.3.3
Combine 12 and 2.
r=32222+(12)2
θ=tan-1(yx)
Step 3.3.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.3.4.1
Cancel the common factor.
r=32222+(12)2
θ=tan-1(yx)
Step 3.3.4.2
Rewrite the expression.
r=322+(12)2
θ=tan-1(yx)
r=322+(12)2
θ=tan-1(yx)
Step 3.3.5
Evaluate the exponent.
r=322+(12)2
θ=tan-1(yx)
r=322+(12)2
θ=tan-1(yx)
Step 3.4
Simplify the expression.
Tap for more steps...
Step 3.4.1
Raise 2 to the power of 2.
r=34+(12)2
θ=tan-1(yx)
Step 3.4.2
Apply the product rule to 12.
r=34+1222
θ=tan-1(yx)
Step 3.4.3
One to any power is one.
r=34+122
θ=tan-1(yx)
Step 3.4.4
Raise 2 to the power of 2.
r=34+14
θ=tan-1(yx)
Step 3.4.5
Combine the numerators over the common denominator.
r=3+14
θ=tan-1(yx)
Step 3.4.6
Add 3 and 1.
r=44
θ=tan-1(yx)
Step 3.4.7
Divide 4 by 4.
r=1
θ=tan-1(yx)
Step 3.4.8
Any root of 1 is 1.
r=1
θ=tan-1(yx)
r=1
θ=tan-1(yx)
r=1
θ=tan-1(yx)
Step 4
Replace x and y with the actual values.
r=1
θ=tan-1(12-32)
Step 5
The inverse tangent of -33 is θ=150°.
r=1
θ=150°
Step 6
This is the result of the conversion to polar coordinates in (r,θ) form.
(1,150°)
 [x2  12  π  xdx ]