Enter a problem...
Trigonometry Examples
(-√32,12)
Step 1
Convert from rectangular coordinates (x,y) to polar coordinates (r,θ) using the conversion formulas.
r=√x2+y2
θ=tan-1(yx)
Step 2
Replace x and y with the actual values.
r=√(-√32)2+(12)2
θ=tan-1(yx)
Step 3
Step 3.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 3.1.1
Apply the product rule to -√32.
r=√(-1)2(√32)2+(12)2
θ=tan-1(yx)
Step 3.1.2
Apply the product rule to √32.
r=√(-1)2(√3222)+(12)2
θ=tan-1(yx)
r=√(-1)2(√3222)+(12)2
θ=tan-1(yx)
Step 3.2
Simplify the expression.
Step 3.2.1
Raise -1 to the power of 2.
r=√1(√3222)+(12)2
θ=tan-1(yx)
Step 3.2.2
Multiply √3222 by 1.
r=√√3222+(12)2
θ=tan-1(yx)
r=√√3222+(12)2
θ=tan-1(yx)
Step 3.3
Rewrite √32 as 3.
Step 3.3.1
Use n√ax=axn to rewrite √3 as 312.
r=√(312)222+(12)2
θ=tan-1(yx)
Step 3.3.2
Apply the power rule and multiply exponents, (am)n=amn.
r=√312⋅222+(12)2
θ=tan-1(yx)
Step 3.3.3
Combine 12 and 2.
r=√32222+(12)2
θ=tan-1(yx)
Step 3.3.4
Cancel the common factor of 2.
Step 3.3.4.1
Cancel the common factor.
r=√32222+(12)2
θ=tan-1(yx)
Step 3.3.4.2
Rewrite the expression.
r=√322+(12)2
θ=tan-1(yx)
r=√322+(12)2
θ=tan-1(yx)
Step 3.3.5
Evaluate the exponent.
r=√322+(12)2
θ=tan-1(yx)
r=√322+(12)2
θ=tan-1(yx)
Step 3.4
Simplify the expression.
Step 3.4.1
Raise 2 to the power of 2.
r=√34+(12)2
θ=tan-1(yx)
Step 3.4.2
Apply the product rule to 12.
r=√34+1222
θ=tan-1(yx)
Step 3.4.3
One to any power is one.
r=√34+122
θ=tan-1(yx)
Step 3.4.4
Raise 2 to the power of 2.
r=√34+14
θ=tan-1(yx)
Step 3.4.5
Combine the numerators over the common denominator.
r=√3+14
θ=tan-1(yx)
Step 3.4.6
Add 3 and 1.
r=√44
θ=tan-1(yx)
Step 3.4.7
Divide 4 by 4.
r=√1
θ=tan-1(yx)
Step 3.4.8
Any root of 1 is 1.
r=1
θ=tan-1(yx)
r=1
θ=tan-1(yx)
r=1
θ=tan-1(yx)
Step 4
Replace x and y with the actual values.
r=1
θ=tan-1(12-√32)
Step 5
The inverse tangent of -√33 is θ=150°.
r=1
θ=150°
Step 6
This is the result of the conversion to polar coordinates in (r,θ) form.
(1,150°)