Trigonometry Examples

Convert to Trigonometric Form (4 square root of 3-4i)*(8i)
(43-4i)(8i)(434i)(8i)
Step 1
Apply the distributive property.
43(8i)-4i(8i)43(8i)4i(8i)
Step 2
Multiply 88 by 44.
323i-4i(8i)323i4i(8i)
Step 3
Multiply -4i(8i)4i(8i).
Tap for more steps...
Step 3.1
Multiply 88 by -44.
323i-32ii323i32ii
Step 3.2
Raise ii to the power of 11.
323i-32(i1i)323i32(i1i)
Step 3.3
Raise ii to the power of 11.
323i-32(i1i1)323i32(i1i1)
Step 3.4
Use the power rule aman=am+naman=am+n to combine exponents.
323i-32i1+1323i32i1+1
Step 3.5
Add 11 and 11.
323i-32i2323i32i2
323i-32i2323i32i2
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Rewrite i2i2 as -11.
323i-32-1323i321
Step 4.2
Multiply -3232 by -11.
323i+32323i+32
323i+32323i+32
Step 5
Reorder 323i323i and 3232.
32+323i32+323i
Step 6
This is the trigonometric form of a complex number where |z||z| is the modulus and θθ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))z=a+bi=|z|(cos(θ)+isin(θ))
Step 7
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=a2+b2|z|=a2+b2 where z=a+biz=a+bi
Step 8
Substitute the actual values of a=32a=32 and b=323b=323.
|z|=(323)2+322|z|=(323)2+322
Step 9
Find |z||z|.
Tap for more steps...
Step 9.1
Simplify the expression.
Tap for more steps...
Step 9.1.1
Apply the product rule to 323323.
|z|=32232+322|z|=32232+322
Step 9.1.2
Raise 3232 to the power of 22.
|z|=102432+322|z|=102432+322
|z|=102432+322
Step 9.2
Rewrite 32 as 3.
Tap for more steps...
Step 9.2.1
Use nax=axn to rewrite 3 as 312.
|z|=1024(312)2+322
Step 9.2.2
Apply the power rule and multiply exponents, (am)n=amn.
|z|=10243122+322
Step 9.2.3
Combine 12 and 2.
|z|=1024322+322
Step 9.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 9.2.4.1
Cancel the common factor.
|z|=1024322+322
Step 9.2.4.2
Rewrite the expression.
|z|=10243+322
|z|=10243+322
Step 9.2.5
Evaluate the exponent.
|z|=10243+322
|z|=10243+322
Step 9.3
Simplify the expression.
Tap for more steps...
Step 9.3.1
Multiply 1024 by 3.
|z|=3072+322
Step 9.3.2
Raise 32 to the power of 2.
|z|=3072+1024
Step 9.3.3
Add 3072 and 1024.
|z|=4096
Step 9.3.4
Rewrite 4096 as 642.
|z|=642
Step 9.3.5
Pull terms out from under the radical, assuming positive real numbers.
|z|=64
|z|=64
|z|=64
Step 10
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(32332)
Step 11
Since inverse tangent of 32332 produces an angle in the first quadrant, the value of the angle is π3.
θ=π3
Step 12
Substitute the values of θ=π3 and |z|=64.
64(cos(π3)+isin(π3))
 [x2  12  π  xdx ]