Enter a problem...
Trigonometry Examples
(4√3-4i)⋅(8i)(4√3−4i)⋅(8i)
Step 1
Apply the distributive property.
4√3(8i)-4i(8i)4√3(8i)−4i(8i)
Step 2
Multiply 88 by 44.
32√3i-4i(8i)32√3i−4i(8i)
Step 3
Step 3.1
Multiply 88 by -4−4.
32√3i-32ii32√3i−32ii
Step 3.2
Raise ii to the power of 11.
32√3i-32(i1i)32√3i−32(i1i)
Step 3.3
Raise ii to the power of 11.
32√3i-32(i1i1)32√3i−32(i1i1)
Step 3.4
Use the power rule aman=am+naman=am+n to combine exponents.
32√3i-32i1+132√3i−32i1+1
Step 3.5
Add 11 and 11.
32√3i-32i232√3i−32i2
32√3i-32i232√3i−32i2
Step 4
Step 4.1
Rewrite i2i2 as -1−1.
32√3i-32⋅-132√3i−32⋅−1
Step 4.2
Multiply -32−32 by -1−1.
32√3i+3232√3i+32
32√3i+3232√3i+32
Step 5
Reorder 32√3i32√3i and 3232.
32+32√3i32+32√3i
Step 6
This is the trigonometric form of a complex number where |z||z| is the modulus and θθ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))z=a+bi=|z|(cos(θ)+isin(θ))
Step 7
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=√a2+b2|z|=√a2+b2 where z=a+biz=a+bi
Step 8
Substitute the actual values of a=32a=32 and b=32√3b=32√3.
|z|=√(32√3)2+322|z|=√(32√3)2+322
Step 9
Step 9.1
Simplify the expression.
Step 9.1.1
Apply the product rule to 32√332√3.
|z|=√322√32+322|z|=√322√32+322
Step 9.1.2
Raise 3232 to the power of 22.
|z|=√1024√32+322|z|=√1024√32+322
|z|=√1024√32+322
Step 9.2
Rewrite √32 as 3.
Step 9.2.1
Use n√ax=axn to rewrite √3 as 312.
|z|=√1024(312)2+322
Step 9.2.2
Apply the power rule and multiply exponents, (am)n=amn.
|z|=√1024⋅312⋅2+322
Step 9.2.3
Combine 12 and 2.
|z|=√1024⋅322+322
Step 9.2.4
Cancel the common factor of 2.
Step 9.2.4.1
Cancel the common factor.
|z|=√1024⋅322+322
Step 9.2.4.2
Rewrite the expression.
|z|=√1024⋅3+322
|z|=√1024⋅3+322
Step 9.2.5
Evaluate the exponent.
|z|=√1024⋅3+322
|z|=√1024⋅3+322
Step 9.3
Simplify the expression.
Step 9.3.1
Multiply 1024 by 3.
|z|=√3072+322
Step 9.3.2
Raise 32 to the power of 2.
|z|=√3072+1024
Step 9.3.3
Add 3072 and 1024.
|z|=√4096
Step 9.3.4
Rewrite 4096 as 642.
|z|=√642
Step 9.3.5
Pull terms out from under the radical, assuming positive real numbers.
|z|=64
|z|=64
|z|=64
Step 10
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(32√332)
Step 11
Since inverse tangent of 32√332 produces an angle in the first quadrant, the value of the angle is π3.
θ=π3
Step 12
Substitute the values of θ=π3 and |z|=64.
64(cos(π3)+isin(π3))