Enter a problem...
Trigonometry Examples
sin(75)sin(75)
Step 1
Step 1.1
To convert radians to degrees, multiply by 180π180π, since a full circle is 360°360° or 2π2π radians.
(sin(75))⋅180°π(sin(75))⋅180°π
Step 1.2
The exact value of sin(75)sin(75) is √2+√64√2+√64.
Step 1.2.1
Split 7575 into two angles where the values of the six trigonometric functions are known.
sin(30+45)⋅180πsin(30+45)⋅180π
Step 1.2.2
Apply the sum of angles identity.
(sin(30)cos(45)+cos(30)sin(45))⋅180π(sin(30)cos(45)+cos(30)sin(45))⋅180π
Step 1.2.3
The exact value of sin(30)sin(30) is 1212.
(12cos(45)+cos(30)sin(45))⋅180π(12cos(45)+cos(30)sin(45))⋅180π
Step 1.2.4
The exact value of cos(45)cos(45) is √22√22.
(12⋅√22+cos(30)sin(45))⋅180π(12⋅√22+cos(30)sin(45))⋅180π
Step 1.2.5
The exact value of cos(30)cos(30) is √32√32.
(12⋅√22+√32sin(45))⋅180π(12⋅√22+√32sin(45))⋅180π
Step 1.2.6
The exact value of sin(45)sin(45) is √22√22.
(12⋅√22+√32⋅√22)⋅180π(12⋅√22+√32⋅√22)⋅180π
Step 1.2.7
Simplify 12⋅√22+√32⋅√2212⋅√22+√32⋅√22.
Step 1.2.7.1
Simplify each term.
Step 1.2.7.1.1
Multiply 12⋅√2212⋅√22.
Step 1.2.7.1.1.1
Multiply 1212 by √22√22.
(√22⋅2+√32⋅√22)⋅180π(√22⋅2+√32⋅√22)⋅180π
Step 1.2.7.1.1.2
Multiply 2 by 2.
(√24+√32⋅√22)⋅180π
(√24+√32⋅√22)⋅180π
Step 1.2.7.1.2
Multiply √32⋅√22.
Step 1.2.7.1.2.1
Multiply √32 by √22.
(√24+√3√22⋅2)⋅180π
Step 1.2.7.1.2.2
Combine using the product rule for radicals.
(√24+√3⋅22⋅2)⋅180π
Step 1.2.7.1.2.3
Multiply 3 by 2.
(√24+√62⋅2)⋅180π
Step 1.2.7.1.2.4
Multiply 2 by 2.
(√24+√64)⋅180π
(√24+√64)⋅180π
(√24+√64)⋅180π
Step 1.2.7.2
Combine the numerators over the common denominator.
√2+√64⋅180π
√2+√64⋅180π
√2+√64⋅180π
Step 1.3
Simplify terms.
Step 1.3.1
Cancel the common factor of 4.
Step 1.3.1.1
Factor 4 out of 180.
√2+√64⋅4(45)π
Step 1.3.1.2
Cancel the common factor.
√2+√64⋅4⋅45π
Step 1.3.1.3
Rewrite the expression.
(√2+√6)⋅45π
(√2+√6)⋅45π
Step 1.3.2
Apply the distributive property.
√245π+√645π
Step 1.3.3
Combine √2 and 45π.
√2⋅45π+√645π
Step 1.3.4
Combine √6 and 45π.
√2⋅45π+√6⋅45π
√2⋅45π+√6⋅45π
Step 1.4
Simplify each term.
Step 1.4.1
Move 45 to the left of √2.
45√2π+√6⋅45π
Step 1.4.2
Move 45 to the left of √6.
45√2π+45√6π
45√2π+45√6π
Step 1.5
π is approximately equal to 3.14159265.
45√23.14159265+45√63.14159265
Step 1.6
Convert to a decimal.
55.34347316°
55.34347316°
Step 2
The angle is in the first quadrant.
Quadrant 1
Step 3