Trigonometry Examples

Find the Quadrant of the Angle sin(75)
sin(75)sin(75)
Step 1
Convert the radian measure to degrees.
Tap for more steps...
Step 1.1
To convert radians to degrees, multiply by 180π180π, since a full circle is 360°360° or 2π2π radians.
(sin(75))180°π(sin(75))180°π
Step 1.2
The exact value of sin(75)sin(75) is 2+642+64.
Tap for more steps...
Step 1.2.1
Split 7575 into two angles where the values of the six trigonometric functions are known.
sin(30+45)180πsin(30+45)180π
Step 1.2.2
Apply the sum of angles identity.
(sin(30)cos(45)+cos(30)sin(45))180π(sin(30)cos(45)+cos(30)sin(45))180π
Step 1.2.3
The exact value of sin(30)sin(30) is 1212.
(12cos(45)+cos(30)sin(45))180π(12cos(45)+cos(30)sin(45))180π
Step 1.2.4
The exact value of cos(45)cos(45) is 2222.
(1222+cos(30)sin(45))180π(1222+cos(30)sin(45))180π
Step 1.2.5
The exact value of cos(30)cos(30) is 3232.
(1222+32sin(45))180π(1222+32sin(45))180π
Step 1.2.6
The exact value of sin(45)sin(45) is 2222.
(1222+3222)180π(1222+3222)180π
Step 1.2.7
Simplify 1222+32221222+3222.
Tap for more steps...
Step 1.2.7.1
Simplify each term.
Tap for more steps...
Step 1.2.7.1.1
Multiply 12221222.
Tap for more steps...
Step 1.2.7.1.1.1
Multiply 1212 by 2222.
(222+3222)180π(222+3222)180π
Step 1.2.7.1.1.2
Multiply 2 by 2.
(24+3222)180π
(24+3222)180π
Step 1.2.7.1.2
Multiply 3222.
Tap for more steps...
Step 1.2.7.1.2.1
Multiply 32 by 22.
(24+3222)180π
Step 1.2.7.1.2.2
Combine using the product rule for radicals.
(24+3222)180π
Step 1.2.7.1.2.3
Multiply 3 by 2.
(24+622)180π
Step 1.2.7.1.2.4
Multiply 2 by 2.
(24+64)180π
(24+64)180π
(24+64)180π
Step 1.2.7.2
Combine the numerators over the common denominator.
2+64180π
2+64180π
2+64180π
Step 1.3
Simplify terms.
Tap for more steps...
Step 1.3.1
Cancel the common factor of 4.
Tap for more steps...
Step 1.3.1.1
Factor 4 out of 180.
2+644(45)π
Step 1.3.1.2
Cancel the common factor.
2+64445π
Step 1.3.1.3
Rewrite the expression.
(2+6)45π
(2+6)45π
Step 1.3.2
Apply the distributive property.
245π+645π
Step 1.3.3
Combine 2 and 45π.
245π+645π
Step 1.3.4
Combine 6 and 45π.
245π+645π
245π+645π
Step 1.4
Simplify each term.
Tap for more steps...
Step 1.4.1
Move 45 to the left of 2.
452π+645π
Step 1.4.2
Move 45 to the left of 6.
452π+456π
452π+456π
Step 1.5
π is approximately equal to 3.14159265.
4523.14159265+4563.14159265
Step 1.6
Convert to a decimal.
55.34347316°
55.34347316°
Step 2
The angle is in the first quadrant.
Quadrant 1
Step 3
 [x2  12  π  xdx ]