Trigonometry Examples

Graph f(x)=arccos(x+1)
f(x)=arccos(x+1)f(x)=arccos(x+1)
Step 1
Select a few points to graph.
Tap for more steps...
Step 1.1
Find the point at x=-2x=2.
Tap for more steps...
Step 1.1.1
Replace the variable xx with -22 in the expression.
f(-2)=arccos((-2)+1)f(2)=arccos((2)+1)
Step 1.1.2
Simplify the result.
Tap for more steps...
Step 1.1.2.1
Add -22 and 11.
f(-2)=arccos(-1)f(2)=arccos(1)
Step 1.1.2.2
The exact value of arccos(-1)arccos(1) is ππ.
f(-2)=πf(2)=π
Step 1.1.2.3
The final answer is ππ.
ππ
ππ
ππ
Step 1.2
Find the point at x=-32x=32.
Tap for more steps...
Step 1.2.1
Replace the variable xx with -3232 in the expression.
f(-32)=arccos((-32)+1)f(32)=arccos((32)+1)
Step 1.2.2
Simplify the result.
Tap for more steps...
Step 1.2.2.1
Write 11 as a fraction with a common denominator.
f(-32)=arccos(-32+22)f(32)=arccos(32+22)
Step 1.2.2.2
Combine the numerators over the common denominator.
f(-32)=arccos(-3+22)f(32)=arccos(3+22)
Step 1.2.2.3
Add -33 and 22.
f(-32)=arccos(-12)f(32)=arccos(12)
Step 1.2.2.4
Move the negative in front of the fraction.
f(-32)=arccos(-12)f(32)=arccos(12)
Step 1.2.2.5
The exact value of arccos(-12)arccos(12) is 2π32π3.
f(-32)=2π3f(32)=2π3
Step 1.2.2.6
The final answer is 2π32π3.
2π32π3
2π32π3
2π32π3
Step 1.3
Find the point at x=-1x=1.
Tap for more steps...
Step 1.3.1
Replace the variable xx with -11 in the expression.
f(-1)=arccos((-1)+1)f(1)=arccos((1)+1)
Step 1.3.2
Simplify the result.
Tap for more steps...
Step 1.3.2.1
Add -11 and 11.
f(-1)=arccos(0)f(1)=arccos(0)
Step 1.3.2.2
The exact value of arccos(0)arccos(0) is π2π2.
f(-1)=π2f(1)=π2
Step 1.3.2.3
The final answer is π2.
π2
π2
π2
Step 1.4
Find the point at x=-12.
Tap for more steps...
Step 1.4.1
Replace the variable x with -12 in the expression.
f(-12)=arccos((-12)+1)
Step 1.4.2
Simplify the result.
Tap for more steps...
Step 1.4.2.1
Write 1 as a fraction with a common denominator.
f(-12)=arccos(-12+22)
Step 1.4.2.2
Combine the numerators over the common denominator.
f(-12)=arccos(-1+22)
Step 1.4.2.3
Add -1 and 2.
f(-12)=arccos(12)
Step 1.4.2.4
The exact value of arccos(12) is π3.
f(-12)=π3
Step 1.4.2.5
The final answer is π3.
π3
π3
π3
Step 1.5
Find the point at x=0.
Tap for more steps...
Step 1.5.1
Replace the variable x with 0 in the expression.
f(0)=arccos((0)+1)
Step 1.5.2
Simplify the result.
Tap for more steps...
Step 1.5.2.1
Add 0 and 1.
f(0)=arccos(1)
Step 1.5.2.2
The exact value of arccos(1) is 0.
f(0)=0
Step 1.5.2.3
The final answer is 0.
0
0
0
Step 1.6
List the points in a table.
xf(x)-2π-322π3-1π2-12π300
xf(x)-2π-322π3-1π2-12π300
Step 2
The trig function can be graphed using the points.
xf(x)-2π-322π3-1π2-12π300
Step 3
 [x2  12  π  xdx ]