Enter a problem...
Trigonometry Examples
f(x)=arccos(x+1)f(x)=arccos(x+1)
Step 1
Step 1.1
Find the point at x=-2x=−2.
Step 1.1.1
Replace the variable xx with -2−2 in the expression.
f(-2)=arccos((-2)+1)f(−2)=arccos((−2)+1)
Step 1.1.2
Simplify the result.
Step 1.1.2.1
Add -2−2 and 11.
f(-2)=arccos(-1)f(−2)=arccos(−1)
Step 1.1.2.2
The exact value of arccos(-1)arccos(−1) is ππ.
f(-2)=πf(−2)=π
Step 1.1.2.3
The final answer is ππ.
ππ
ππ
ππ
Step 1.2
Find the point at x=-32x=−32.
Step 1.2.1
Replace the variable xx with -32−32 in the expression.
f(-32)=arccos((-32)+1)f(−32)=arccos((−32)+1)
Step 1.2.2
Simplify the result.
Step 1.2.2.1
Write 11 as a fraction with a common denominator.
f(-32)=arccos(-32+22)f(−32)=arccos(−32+22)
Step 1.2.2.2
Combine the numerators over the common denominator.
f(-32)=arccos(-3+22)f(−32)=arccos(−3+22)
Step 1.2.2.3
Add -3−3 and 22.
f(-32)=arccos(-12)f(−32)=arccos(−12)
Step 1.2.2.4
Move the negative in front of the fraction.
f(-32)=arccos(-12)f(−32)=arccos(−12)
Step 1.2.2.5
The exact value of arccos(-12)arccos(−12) is 2π32π3.
f(-32)=2π3f(−32)=2π3
Step 1.2.2.6
The final answer is 2π32π3.
2π32π3
2π32π3
2π32π3
Step 1.3
Find the point at x=-1x=−1.
Step 1.3.1
Replace the variable xx with -1−1 in the expression.
f(-1)=arccos((-1)+1)f(−1)=arccos((−1)+1)
Step 1.3.2
Simplify the result.
Step 1.3.2.1
Add -1−1 and 11.
f(-1)=arccos(0)f(−1)=arccos(0)
Step 1.3.2.2
The exact value of arccos(0)arccos(0) is π2π2.
f(-1)=π2f(−1)=π2
Step 1.3.2.3
The final answer is π2.
π2
π2
π2
Step 1.4
Find the point at x=-12.
Step 1.4.1
Replace the variable x with -12 in the expression.
f(-12)=arccos((-12)+1)
Step 1.4.2
Simplify the result.
Step 1.4.2.1
Write 1 as a fraction with a common denominator.
f(-12)=arccos(-12+22)
Step 1.4.2.2
Combine the numerators over the common denominator.
f(-12)=arccos(-1+22)
Step 1.4.2.3
Add -1 and 2.
f(-12)=arccos(12)
Step 1.4.2.4
The exact value of arccos(12) is π3.
f(-12)=π3
Step 1.4.2.5
The final answer is π3.
π3
π3
π3
Step 1.5
Find the point at x=0.
Step 1.5.1
Replace the variable x with 0 in the expression.
f(0)=arccos((0)+1)
Step 1.5.2
Simplify the result.
Step 1.5.2.1
Add 0 and 1.
f(0)=arccos(1)
Step 1.5.2.2
The exact value of arccos(1) is 0.
f(0)=0
Step 1.5.2.3
The final answer is 0.
0
0
0
Step 1.6
List the points in a table.
xf(x)-2π-322π3-1π2-12π300
xf(x)-2π-322π3-1π2-12π300
Step 2
The trig function can be graphed using the points.
xf(x)-2π-322π3-1π2-12π300
Step 3