Trigonometry Examples

Find the Other Trig Values in Quadrant I tan(theta)=6
tan(θ)=6
Step 1
Use the definition of tangent to find the known sides of the unit circle right triangle. The quadrant determines the sign on each of the values.
tan(θ)=oppositeadjacent
Step 2
Find the hypotenuse of the unit circle triangle. Since the opposite and adjacent sides are known, use the Pythagorean theorem to find the remaining side.
Hypotenuse=opposite2+adjacent2
Step 3
Replace the known values in the equation.
Hypotenuse=(6)2+(1)2
Step 4
Simplify inside the radical.
Tap for more steps...
Step 4.1
Raise 6 to the power of 2.
Hypotenuse =36+(1)2
Step 4.2
One to any power is one.
Hypotenuse =36+1
Step 4.3
Add 36 and 1.
Hypotenuse =37
Hypotenuse =37
Step 5
Find the value of sine.
Tap for more steps...
Step 5.1
Use the definition of sine to find the value of sin(θ).
sin(θ)=opphyp
Step 5.2
Substitute in the known values.
sin(θ)=637
Step 5.3
Simplify the value of sin(θ).
Tap for more steps...
Step 5.3.1
Multiply 637 by 3737.
sin(θ)=6373737
Step 5.3.2
Combine and simplify the denominator.
Tap for more steps...
Step 5.3.2.1
Multiply 637 by 3737.
sin(θ)=6373737
Step 5.3.2.2
Raise 37 to the power of 1.
sin(θ)=6373737
Step 5.3.2.3
Raise 37 to the power of 1.
sin(θ)=6373737
Step 5.3.2.4
Use the power rule aman=am+n to combine exponents.
sin(θ)=637371+1
Step 5.3.2.5
Add 1 and 1.
sin(θ)=637372
Step 5.3.2.6
Rewrite 372 as 37.
Tap for more steps...
Step 5.3.2.6.1
Use axn=axn to rewrite 37 as 3712.
sin(θ)=637(3712)2
Step 5.3.2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
sin(θ)=63737122
Step 5.3.2.6.3
Combine 12 and 2.
sin(θ)=6373722
Step 5.3.2.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 5.3.2.6.4.1
Cancel the common factor.
sin(θ)=6373722
Step 5.3.2.6.4.2
Rewrite the expression.
sin(θ)=63737
sin(θ)=63737
Step 5.3.2.6.5
Evaluate the exponent.
sin(θ)=63737
sin(θ)=63737
sin(θ)=63737
sin(θ)=63737
sin(θ)=63737
Step 6
Find the value of cosine.
Tap for more steps...
Step 6.1
Use the definition of cosine to find the value of cos(θ).
cos(θ)=adjhyp
Step 6.2
Substitute in the known values.
cos(θ)=137
Step 6.3
Simplify the value of cos(θ).
Tap for more steps...
Step 6.3.1
Multiply 137 by 3737.
cos(θ)=1373737
Step 6.3.2
Combine and simplify the denominator.
Tap for more steps...
Step 6.3.2.1
Multiply 137 by 3737.
cos(θ)=373737
Step 6.3.2.2
Raise 37 to the power of 1.
cos(θ)=373737
Step 6.3.2.3
Raise 37 to the power of 1.
cos(θ)=373737
Step 6.3.2.4
Use the power rule aman=am+n to combine exponents.
cos(θ)=37371+1
Step 6.3.2.5
Add 1 and 1.
cos(θ)=37372
Step 6.3.2.6
Rewrite 372 as 37.
Tap for more steps...
Step 6.3.2.6.1
Use axn=axn to rewrite 37 as 3712.
cos(θ)=37(3712)2
Step 6.3.2.6.2
Apply the power rule and multiply exponents, (am)n=amn.
cos(θ)=3737122
Step 6.3.2.6.3
Combine 12 and 2.
cos(θ)=373722
Step 6.3.2.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 6.3.2.6.4.1
Cancel the common factor.
cos(θ)=373722
Step 6.3.2.6.4.2
Rewrite the expression.
cos(θ)=3737
cos(θ)=3737
Step 6.3.2.6.5
Evaluate the exponent.
cos(θ)=3737
cos(θ)=3737
cos(θ)=3737
cos(θ)=3737
cos(θ)=3737
Step 7
Find the value of cotangent.
Tap for more steps...
Step 7.1
Use the definition of cotangent to find the value of cot(θ).
cot(θ)=adjopp
Step 7.2
Substitute in the known values.
cot(θ)=16
cot(θ)=16
Step 8
Find the value of secant.
Tap for more steps...
Step 8.1
Use the definition of secant to find the value of sec(θ).
sec(θ)=hypadj
Step 8.2
Substitute in the known values.
sec(θ)=371
Step 8.3
Divide 37 by 1.
sec(θ)=37
sec(θ)=37
Step 9
Find the value of cosecant.
Tap for more steps...
Step 9.1
Use the definition of cosecant to find the value of csc(θ).
csc(θ)=hypopp
Step 9.2
Substitute in the known values.
csc(θ)=376
csc(θ)=376
Step 10
This is the solution to each trig value.
sin(θ)=63737
cos(θ)=3737
tan(θ)=6
cot(θ)=16
sec(θ)=37
csc(θ)=376
tanθ=6
(
(
)
)
|
|
[
[
]
]
°
°
7
7
8
8
9
9
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]