Enter a problem...
Trigonometry Examples
y=cos(4πx)y=cos(4πx)
Step 1
Use the form acos(bx-c)+dacos(bx−c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=1a=1
b=4πb=4π
c=0c=0
d=0d=0
Step 2
Find the amplitude |a||a|.
Amplitude: 11
Step 3
Step 3.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.2
Replace bb with 4π4π in the formula for period.
2π|4π|2π|4π|
Step 3.3
4π4π is approximately 12.5663706112.56637061 which is positive so remove the absolute value
2π4π2π4π
Step 3.4
Cancel the common factor of 22 and 44.
Step 3.4.1
Factor 22 out of 2π2π.
2(π)4π2(π)4π
Step 3.4.2
Cancel the common factors.
Step 3.4.2.1
Factor 22 out of 4π4π.
2(π)2(2π)2(π)2(2π)
Step 3.4.2.2
Cancel the common factor.
2π2(2π)
Step 3.4.2.3
Rewrite the expression.
π2π
π2π
π2π
Step 3.5
Cancel the common factor of π.
Step 3.5.1
Cancel the common factor.
π2π
Step 3.5.2
Rewrite the expression.
12
12
12
Step 4
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: 04π
Step 4.3
Cancel the common factor of 0 and 4.
Step 4.3.1
Factor 4 out of 0.
Phase Shift: 4(0)4π
Step 4.3.2
Cancel the common factors.
Step 4.3.2.1
Factor 4 out of 4π.
Phase Shift: 4(0)4(π)
Step 4.3.2.2
Cancel the common factor.
Phase Shift: 4⋅04π
Step 4.3.2.3
Rewrite the expression.
Phase Shift: 0π
Phase Shift: 0π
Phase Shift: 0π
Step 4.4
Divide 0 by π.
Phase Shift: 0
Phase Shift: 0
Step 5
List the properties of the trigonometric function.
Amplitude: 1
Period: 12
Phase Shift: None
Vertical Shift: None
Step 6
Step 6.1
Find the point at x=0.
Step 6.1.1
Replace the variable x with 0 in the expression.
f(0)=cos(4π(0))
Step 6.1.2
Simplify the result.
Step 6.1.2.1
Multiply 4π(0).
Step 6.1.2.1.1
Multiply 0 by 4.
f(0)=cos(0π)
Step 6.1.2.1.2
Multiply 0 by π.
f(0)=cos(0)
f(0)=cos(0)
Step 6.1.2.2
The exact value of cos(0) is 1.
f(0)=1
Step 6.1.2.3
The final answer is 1.
1
1
1
Step 6.2
Find the point at x=18.
Step 6.2.1
Replace the variable x with 18 in the expression.
f(18)=cos(4π(18))
Step 6.2.2
Simplify the result.
Step 6.2.2.1
Cancel the common factor of 4.
Step 6.2.2.1.1
Factor 4 out of 4π.
f(18)=cos(4(π)(18))
Step 6.2.2.1.2
Factor 4 out of 8.
f(18)=cos(4(π)(14(2)))
Step 6.2.2.1.3
Cancel the common factor.
f(18)=cos(4π(14⋅2))
Step 6.2.2.1.4
Rewrite the expression.
f(18)=cos(π(12))
f(18)=cos(π(12))
Step 6.2.2.2
Combine π and 12.
f(18)=cos(π2)
Step 6.2.2.3
The exact value of cos(π2) is 0.
f(18)=0
Step 6.2.2.4
The final answer is 0.
0
0
0
Step 6.3
Find the point at x=14.
Step 6.3.1
Replace the variable x with 14 in the expression.
f(14)=cos(4π(14))
Step 6.3.2
Simplify the result.
Step 6.3.2.1
Cancel the common factor of 4.
Step 6.3.2.1.1
Factor 4 out of 4π.
f(14)=cos(4(π)(14))
Step 6.3.2.1.2
Cancel the common factor.
f(14)=cos(4π(14))
Step 6.3.2.1.3
Rewrite the expression.
f(14)=cos(π)
f(14)=cos(π)
Step 6.3.2.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
f(14)=-cos(0)
Step 6.3.2.3
The exact value of cos(0) is 1.
f(14)=-1⋅1
Step 6.3.2.4
Multiply -1 by 1.
f(14)=-1
Step 6.3.2.5
The final answer is -1.
-1
-1
-1
Step 6.4
Find the point at x=38.
Step 6.4.1
Replace the variable x with 38 in the expression.
f(38)=cos(4π(38))
Step 6.4.2
Simplify the result.
Step 6.4.2.1
Cancel the common factor of 4.
Step 6.4.2.1.1
Factor 4 out of 4π.
f(38)=cos(4(π)(38))
Step 6.4.2.1.2
Factor 4 out of 8.
f(38)=cos(4(π)(34(2)))
Step 6.4.2.1.3
Cancel the common factor.
f(38)=cos(4π(34⋅2))
Step 6.4.2.1.4
Rewrite the expression.
f(38)=cos(π(32))
f(38)=cos(π(32))
Step 6.4.2.2
Combine π and 32.
f(38)=cos(π⋅32)
Step 6.4.2.3
Move 3 to the left of π.
f(38)=cos(3⋅π2)
Step 6.4.2.4
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
f(38)=cos(π2)
Step 6.4.2.5
The exact value of cos(π2) is 0.
f(38)=0
Step 6.4.2.6
The final answer is 0.
0
0
0
Step 6.5
Find the point at x=12.
Step 6.5.1
Replace the variable x with 12 in the expression.
f(12)=cos(4π(12))
Step 6.5.2
Simplify the result.
Step 6.5.2.1
Cancel the common factor of 2.
Step 6.5.2.1.1
Factor 2 out of 4π.
f(12)=cos(2(2π)(12))
Step 6.5.2.1.2
Cancel the common factor.
f(12)=cos(2(2π)(12))
Step 6.5.2.1.3
Rewrite the expression.
f(12)=cos(2π)
f(12)=cos(2π)
Step 6.5.2.2
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
f(12)=cos(0)
Step 6.5.2.3
The exact value of cos(0) is 1.
f(12)=1
Step 6.5.2.4
The final answer is 1.
1
1
1
Step 6.6
List the points in a table.
xf(x)0118014-1380121
xf(x)0118014-1380121
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Amplitude: 1
Period: 12
Phase Shift: None
Vertical Shift: None
xf(x)0118014-1380121
Step 8