Trigonometry Examples

Find the Sine Given the Point (-15,36)
(-15,36)(15,36)
Step 1
To find the sin(θ)sin(θ) between the x-axis and the line between the points (0,0)(0,0) and (-15,36)(15,36), draw the triangle between the three points (0,0)(0,0), (-15,0)(15,0), and (-15,36)(15,36).
Opposite : 3636
Adjacent : -1515
Step 2
Find the hypotenuse using Pythagorean theorem c=a2+b2c=a2+b2.
Tap for more steps...
Step 2.1
Raise -1515 to the power of 22.
225+(36)2225+(36)2
Step 2.2
Raise 3636 to the power of 22.
225+1296225+1296
Step 2.3
Add 225225 and 12961296.
15211521
Step 2.4
Rewrite 15211521 as 392392.
392392
Step 2.5
Pull terms out from under the radical, assuming positive real numbers.
3939
3939
Step 3
sin(θ)=OppositeHypotenusesin(θ)=OppositeHypotenuse therefore sin(θ)=3639sin(θ)=3639.
36393639
Step 4
Cancel the common factor of 3636 and 3939.
Tap for more steps...
Step 4.1
Factor 33 out of 3636.
sin(θ)=3(12)39sin(θ)=3(12)39
Step 4.2
Cancel the common factors.
Tap for more steps...
Step 4.2.1
Factor 33 out of 3939.
sin(θ)=312313sin(θ)=312313
Step 4.2.2
Cancel the common factor.
sin(θ)=312313
Step 4.2.3
Rewrite the expression.
sin(θ)=1213
sin(θ)=1213
sin(θ)=1213
Step 5
Approximate the result.
sin(θ)=12130.923076
 [x2  12  π  xdx ]