Enter a problem...
Trigonometry Examples
(-9,-5)(−9,−5)
Step 1
To find the sin(θ)sin(θ) between the x-axis and the line between the points (0,0)(0,0) and (-9,-5)(−9,−5), draw the triangle between the three points (0,0)(0,0), (-9,0)(−9,0), and (-9,-5)(−9,−5).
Opposite : -5−5
Adjacent : -9−9
Step 2
Step 2.1
Raise -9−9 to the power of 22.
√81+(-5)2√81+(−5)2
Step 2.2
Raise -5−5 to the power of 22.
√81+25√81+25
Step 2.3
Add 8181 and 2525.
√106√106
√106√106
Step 3
sin(θ)=OppositeHypotenusesin(θ)=OppositeHypotenuse therefore sin(θ)=-5√106sin(θ)=−5√106.
-5√106−5√106
Step 4
Step 4.1
Move the negative in front of the fraction.
sin(θ)=-5√106sin(θ)=−5√106
Step 4.2
Multiply 5√1065√106 by √106√106√106√106.
sin(θ)=-(5√106⋅√106√106)sin(θ)=−(5√106⋅√106√106)
Step 4.3
Combine and simplify the denominator.
Step 4.3.1
Multiply 5√1065√106 by √106√106√106√106.
sin(θ)=-5√106√106√106sin(θ)=−5√106√106√106
Step 4.3.2
Raise √106√106 to the power of 11.
sin(θ)=-5√106√106√106sin(θ)=−5√106√106√106
Step 4.3.3
Raise √106√106 to the power of 11.
sin(θ)=-5√106√106√106sin(θ)=−5√106√106√106
Step 4.3.4
Use the power rule aman=am+naman=am+n to combine exponents.
sin(θ)=-5√106√1061+1sin(θ)=−5√106√1061+1
Step 4.3.5
Add 11 and 11.
sin(θ)=-5√106√1062sin(θ)=−5√106√1062
Step 4.3.6
Rewrite √1062√1062 as 106106.
Step 4.3.6.1
Use n√ax=axnn√ax=axn to rewrite √106√106 as 1061210612.
sin(θ)=-5√106(10612)2sin(θ)=−5√106(10612)2
Step 4.3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
sin(θ)=-5√10610612⋅2sin(θ)=−5√10610612⋅2
Step 4.3.6.3
Combine 1212 and 22.
sin(θ)=-5√10610622sin(θ)=−5√10610622
Step 4.3.6.4
Cancel the common factor of 22.
Step 4.3.6.4.1
Cancel the common factor.
sin(θ)=-5√10610622
Step 4.3.6.4.2
Rewrite the expression.
sin(θ)=-5√106106
sin(θ)=-5√106106
Step 4.3.6.5
Evaluate the exponent.
sin(θ)=-5√106106
sin(θ)=-5√106106
sin(θ)=-5√106106
sin(θ)=-5√106106
Step 5
Approximate the result.
sin(θ)=-5√106106≈-0.48564293