Trigonometry Examples

Find the Sine Given the Point (-9,-5)
(-9,-5)(9,5)
Step 1
To find the sin(θ)sin(θ) between the x-axis and the line between the points (0,0)(0,0) and (-9,-5)(9,5), draw the triangle between the three points (0,0)(0,0), (-9,0)(9,0), and (-9,-5)(9,5).
Opposite : -55
Adjacent : -99
Step 2
Find the hypotenuse using Pythagorean theorem c=a2+b2c=a2+b2.
Tap for more steps...
Step 2.1
Raise -99 to the power of 22.
81+(-5)281+(5)2
Step 2.2
Raise -55 to the power of 22.
81+2581+25
Step 2.3
Add 8181 and 2525.
106106
106106
Step 3
sin(θ)=OppositeHypotenusesin(θ)=OppositeHypotenuse therefore sin(θ)=-5106sin(θ)=5106.
-51065106
Step 4
Simplify sin(θ)sin(θ).
Tap for more steps...
Step 4.1
Move the negative in front of the fraction.
sin(θ)=-5106sin(θ)=5106
Step 4.2
Multiply 51065106 by 106106106106.
sin(θ)=-(5106106106)sin(θ)=(5106106106)
Step 4.3
Combine and simplify the denominator.
Tap for more steps...
Step 4.3.1
Multiply 51065106 by 106106106106.
sin(θ)=-5106106106sin(θ)=5106106106
Step 4.3.2
Raise 106106 to the power of 11.
sin(θ)=-5106106106sin(θ)=5106106106
Step 4.3.3
Raise 106106 to the power of 11.
sin(θ)=-5106106106sin(θ)=5106106106
Step 4.3.4
Use the power rule aman=am+naman=am+n to combine exponents.
sin(θ)=-51061061+1sin(θ)=51061061+1
Step 4.3.5
Add 11 and 11.
sin(θ)=-51061062sin(θ)=51061062
Step 4.3.6
Rewrite 10621062 as 106106.
Tap for more steps...
Step 4.3.6.1
Use nax=axnnax=axn to rewrite 106106 as 1061210612.
sin(θ)=-5106(10612)2sin(θ)=5106(10612)2
Step 4.3.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
sin(θ)=-5106106122sin(θ)=5106106122
Step 4.3.6.3
Combine 1212 and 22.
sin(θ)=-510610622sin(θ)=510610622
Step 4.3.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 4.3.6.4.1
Cancel the common factor.
sin(θ)=-510610622
Step 4.3.6.4.2
Rewrite the expression.
sin(θ)=-5106106
sin(θ)=-5106106
Step 4.3.6.5
Evaluate the exponent.
sin(θ)=-5106106
sin(θ)=-5106106
sin(θ)=-5106106
sin(θ)=-5106106
Step 5
Approximate the result.
sin(θ)=-5106106-0.48564293
 [x2  12  π  xdx ]