Enter a problem...
Trigonometry Examples
3−10i
Step 1
This is the trigonometric form of a complex number where |z| is the modulus and θ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=√a2+b2 where z=a+bi
Step 3
Substitute the actual values of a=3 and b=−10.
|z|=√(−10)2+32
Step 4
Step 4.1
Raise −10 to the power of 2.
|z|=√100+32
Step 4.2
Raise 3 to the power of 2.
|z|=√100+9
Step 4.3
Add 100 and 9.
|z|=√109
|z|=√109
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(−103)
Step 6
Since inverse tangent of −103 produces an angle in the fourth quadrant, the value of the angle is −1.27933953.
θ=−1.27933953
Step 7
Substitute the values of θ=−1.27933953 and |z|=√109.
√109(cos(−1.27933953)+isin(−1.27933953))