Trigonometry Examples

Convert from Degrees to Radians cos(165)
cos(165)cos(165)
Step 1
To convert degrees to radians, multiply by π180°π180°, since a full circle is 360°360° or 2π2π radians.

Step 2
The exact value of cos(165)cos(165) is -6+246+24.
Tap for more steps...
Step 2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
-cos(15)π180cos(15)π180 radians
Step 2.2
Split 1515 into two angles where the values of the six trigonometric functions are known.
-cos(45-30)π180cos(4530)π180 radians
Step 2.3
Separate negation.
-cos(45-(30))π180cos(45(30))π180 radians
Step 2.4
Apply the difference of angles identity cos(x-y)=cos(x)cos(y)+sin(x)sin(y)cos(xy)=cos(x)cos(y)+sin(x)sin(y).
-(cos(45)cos(30)+sin(45)sin(30))π180(cos(45)cos(30)+sin(45)sin(30))π180 radians
Step 2.5
The exact value of cos(45)cos(45) is 2222.
-(22cos(30)+sin(45)sin(30))π180(22cos(30)+sin(45)sin(30))π180 radians
Step 2.6
The exact value of cos(30)cos(30) is 3232.
-(2232+sin(45)sin(30))π180(2232+sin(45)sin(30))π180 radians
Step 2.7
The exact value of sin(45)sin(45) is 2222.
-(2232+22sin(30))π180(2232+22sin(30))π180 radians
Step 2.8
The exact value of sin(30)sin(30) is 1212.
-(2232+2212)π180(2232+2212)π180 radians
Step 2.9
Simplify -(2232+2212)(2232+2212).
Tap for more steps...
Step 2.9.1
Simplify each term.
Tap for more steps...
Step 2.9.1.1
Multiply 22322232.
Tap for more steps...
Step 2.9.1.1.1
Multiply 2222 by 3232.
-(2322+2212)π180(2322+2212)π180 radians
Step 2.9.1.1.2
Combine using the product rule for radicals.
-(2322+2212)π180(2322+2212)π180 radians
Step 2.9.1.1.3
Multiply 22 by 33.
-(622+2212)π180(622+2212)π180 radians
Step 2.9.1.1.4
Multiply 22 by 22.
-(64+2212)π180(64+2212)π180 radians
-(64+2212)π180(64+2212)π180 radians
Step 2.9.1.2
Multiply 22122212.
Tap for more steps...
Step 2.9.1.2.1
Multiply 2222 by 1212.
-(64+222)π180(64+222)π180 radians
Step 2.9.1.2.2
Multiply 22 by 22.
-(64+24)π180(64+24)π180 radians
-(64+24)π180(64+24)π180 radians
-(64+24)π180(64+24)π180 radians
Step 2.9.2
Combine the numerators over the common denominator.
-6+24π1806+24π180 radians
-6+24π1806+24π180 radians
-6+24π1806+24π180 radians
Step 3
Multiply -6+24π1806+24π180.
Tap for more steps...
Step 3.1
Multiply π180π180 by 6+246+24.
-π(6+2)1804π(6+2)1804 radians
Step 3.2
Multiply 180180 by 44.
-π(6+2)720π(6+2)720 radians
-π(6+2)720π(6+2)720 radians
 [x2  12  π  xdx ]  x2  12  π  xdx