Enter a problem...
Trigonometry Examples
cos(165)cos(165)
Step 1
To convert degrees to radians, multiply by π180°π180°, since a full circle is 360°360° or 2π2π radians.
Step 2
Step 2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
-cos(15)⋅π180−cos(15)⋅π180 radians
Step 2.2
Split 1515 into two angles where the values of the six trigonometric functions are known.
-cos(45-30)⋅π180−cos(45−30)⋅π180 radians
Step 2.3
Separate negation.
-cos(45-(30))⋅π180−cos(45−(30))⋅π180 radians
Step 2.4
Apply the difference of angles identity cos(x-y)=cos(x)cos(y)+sin(x)sin(y)cos(x−y)=cos(x)cos(y)+sin(x)sin(y).
-(cos(45)cos(30)+sin(45)sin(30))⋅π180−(cos(45)cos(30)+sin(45)sin(30))⋅π180 radians
Step 2.5
The exact value of cos(45)cos(45) is √22√22.
-(√22⋅cos(30)+sin(45)sin(30))⋅π180−(√22⋅cos(30)+sin(45)sin(30))⋅π180 radians
Step 2.6
The exact value of cos(30)cos(30) is √32√32.
-(√22⋅√32+sin(45)sin(30))⋅π180−(√22⋅√32+sin(45)sin(30))⋅π180 radians
Step 2.7
The exact value of sin(45)sin(45) is √22√22.
-(√22⋅√32+√22⋅sin(30))⋅π180−(√22⋅√32+√22⋅sin(30))⋅π180 radians
Step 2.8
The exact value of sin(30)sin(30) is 1212.
-(√22⋅√32+√22⋅12)⋅π180−(√22⋅√32+√22⋅12)⋅π180 radians
Step 2.9
Simplify -(√22⋅√32+√22⋅12)−(√22⋅√32+√22⋅12).
Step 2.9.1
Simplify each term.
Step 2.9.1.1
Multiply √22⋅√32√22⋅√32.
Step 2.9.1.1.1
Multiply √22√22 by √32√32.
-(√2√32⋅2+√22⋅12)⋅π180−(√2√32⋅2+√22⋅12)⋅π180 radians
Step 2.9.1.1.2
Combine using the product rule for radicals.
-(√2⋅32⋅2+√22⋅12)⋅π180−(√2⋅32⋅2+√22⋅12)⋅π180 radians
Step 2.9.1.1.3
Multiply 22 by 33.
-(√62⋅2+√22⋅12)⋅π180−(√62⋅2+√22⋅12)⋅π180 radians
Step 2.9.1.1.4
Multiply 22 by 22.
-(√64+√22⋅12)⋅π180−(√64+√22⋅12)⋅π180 radians
-(√64+√22⋅12)⋅π180−(√64+√22⋅12)⋅π180 radians
Step 2.9.1.2
Multiply √22⋅12√22⋅12.
Step 2.9.1.2.1
Multiply √22√22 by 1212.
-(√64+√22⋅2)⋅π180−(√64+√22⋅2)⋅π180 radians
Step 2.9.1.2.2
Multiply 22 by 22.
-(√64+√24)⋅π180−(√64+√24)⋅π180 radians
-(√64+√24)⋅π180−(√64+√24)⋅π180 radians
-(√64+√24)⋅π180−(√64+√24)⋅π180 radians
Step 2.9.2
Combine the numerators over the common denominator.
-√6+√24⋅π180−√6+√24⋅π180 radians
-√6+√24⋅π180−√6+√24⋅π180 radians
-√6+√24⋅π180−√6+√24⋅π180 radians
Step 3
Step 3.1
Multiply π180π180 by √6+√24√6+√24.
-π(√6+√2)180⋅4−π(√6+√2)180⋅4 radians
Step 3.2
Multiply 180180 by 44.
-π(√6+√2)720−π(√6+√2)720 radians
-π(√6+√2)720−π(√6+√2)720 radians