Enter a problem...
Trigonometry Examples
Step 1
Start on the left side.
Step 2
Step 2.1
To write as a fraction with a common denominator, multiply by .
Step 2.2
To write as a fraction with a common denominator, multiply by .
Step 2.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 2.3.1
Multiply by .
Step 2.3.2
Multiply by .
Step 2.3.3
Reorder the factors of .
Step 2.4
Combine the numerators over the common denominator.
Step 2.5
Simplify the numerator.
Step 2.5.1
Expand using the FOIL Method.
Step 2.5.1.1
Apply the distributive property.
Step 2.5.1.2
Apply the distributive property.
Step 2.5.1.3
Apply the distributive property.
Step 2.5.2
Combine the opposite terms in .
Step 2.5.2.1
Reorder the factors in the terms and .
Step 2.5.2.2
Subtract from .
Step 2.5.2.3
Add and .
Step 2.5.3
Simplify each term.
Step 2.5.3.1
Multiply .
Step 2.5.3.1.1
Raise to the power of .
Step 2.5.3.1.2
Raise to the power of .
Step 2.5.3.1.3
Use the power rule to combine exponents.
Step 2.5.3.1.4
Add and .
Step 2.5.3.2
Multiply .
Step 2.5.3.2.1
Raise to the power of .
Step 2.5.3.2.2
Raise to the power of .
Step 2.5.3.2.3
Use the power rule to combine exponents.
Step 2.5.3.2.4
Add and .
Step 2.5.4
Expand using the FOIL Method.
Step 2.5.4.1
Apply the distributive property.
Step 2.5.4.2
Apply the distributive property.
Step 2.5.4.3
Apply the distributive property.
Step 2.5.5
Combine the opposite terms in .
Step 2.5.5.1
Reorder the factors in the terms and .
Step 2.5.5.2
Subtract from .
Step 2.5.5.3
Add and .
Step 2.5.6
Simplify each term.
Step 2.5.6.1
Multiply .
Step 2.5.6.1.1
Raise to the power of .
Step 2.5.6.1.2
Raise to the power of .
Step 2.5.6.1.3
Use the power rule to combine exponents.
Step 2.5.6.1.4
Add and .
Step 2.5.6.2
Multiply .
Step 2.5.6.2.1
Raise to the power of .
Step 2.5.6.2.2
Raise to the power of .
Step 2.5.6.2.3
Use the power rule to combine exponents.
Step 2.5.6.2.4
Add and .
Step 2.5.7
Rewrite in a factored form.
Step 2.5.7.1
Regroup terms.
Step 2.5.7.2
Rearrange terms.
Step 2.5.7.3
Apply pythagorean identity.
Step 2.5.7.4
Rewrite in a factored form.
Step 2.5.7.4.1
Rewrite as .
Step 2.5.7.4.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.5.7.5
Factor out of .
Step 2.5.7.5.1
Factor out of .
Step 2.5.7.5.2
Factor out of .
Step 2.5.7.5.3
Factor out of .
Step 2.5.7.6
Expand using the FOIL Method.
Step 2.5.7.6.1
Apply the distributive property.
Step 2.5.7.6.2
Apply the distributive property.
Step 2.5.7.6.3
Apply the distributive property.
Step 2.5.7.7
Simplify and combine like terms.
Step 2.5.7.7.1
Simplify each term.
Step 2.5.7.7.1.1
Multiply by .
Step 2.5.7.7.1.2
Multiply .
Step 2.5.7.7.1.2.1
Multiply by .
Step 2.5.7.7.1.2.2
Multiply by .
Step 2.5.7.7.1.3
Multiply by .
Step 2.5.7.7.1.4
Multiply .
Step 2.5.7.7.1.4.1
Multiply by .
Step 2.5.7.7.1.4.2
Multiply by .
Step 2.5.7.7.1.4.3
Raise to the power of .
Step 2.5.7.7.1.4.4
Raise to the power of .
Step 2.5.7.7.1.4.5
Use the power rule to combine exponents.
Step 2.5.7.7.1.4.6
Add and .
Step 2.5.7.7.2
Subtract from .
Step 2.5.7.7.3
Add and .
Step 2.5.7.8
Rewrite as .
Step 2.5.7.9
Factor out of .
Step 2.5.7.10
Factor out of .
Step 2.5.7.11
Rewrite as .
Step 2.5.7.12
Apply pythagorean identity.
Step 2.5.7.13
Subtract from .
Step 2.6
Multiply by .
Step 2.7
Divide by .
Step 3
Because the two sides have been shown to be equivalent, the equation is an identity.
is an identity