Enter a problem...
Trigonometry Examples
y=3tan(2x-1)y=3tan(2x−1)
Step 1
Rewrite the equation as 3tan(2x-1)=y3tan(2x−1)=y.
3tan(2x-1)=y3tan(2x−1)=y
Step 2
Step 2.1
Divide each term in 3tan(2x-1)=y3tan(2x−1)=y by 33.
3tan(2x-1)3=y33tan(2x−1)3=y3
Step 2.2
Simplify the left side.
Step 2.2.1
Cancel the common factor of 33.
Step 2.2.1.1
Cancel the common factor.
3tan(2x-1)3=y3
Step 2.2.1.2
Divide tan(2x-1) by 1.
tan(2x-1)=y3
tan(2x-1)=y3
tan(2x-1)=y3
tan(2x-1)=y3
Step 3
Take the inverse tangent of both sides of the equation to extract x from inside the tangent.
2x-1=arctan(y3)
Step 4
Add 1 to both sides of the equation.
2x=arctan(y3)+1
Step 5
Step 5.1
Divide each term in 2x=arctan(y3)+1 by 2.
2x2=arctan(y3)2+12
Step 5.2
Simplify the left side.
Step 5.2.1
Cancel the common factor of 2.
Step 5.2.1.1
Cancel the common factor.
2x2=arctan(y3)2+12
Step 5.2.1.2
Divide x by 1.
x=arctan(y3)2+12
x=arctan(y3)2+12
x=arctan(y3)2+12
x=arctan(y3)2+12