Enter a problem...
Trigonometry Examples
(sec(x)+tan(x))(1-sin(x))(sec(x)+tan(x))(1−sin(x))
Step 1
Step 1.1
Rewrite sec(x)sec(x) in terms of sines and cosines.
(1cos(x)+tan(x))(1-sin(x))(1cos(x)+tan(x))(1−sin(x))
Step 1.2
Rewrite tan(x)tan(x) in terms of sines and cosines.
(1cos(x)+sin(x)cos(x))(1-sin(x))(1cos(x)+sin(x)cos(x))(1−sin(x))
(1cos(x)+sin(x)cos(x))(1-sin(x))(1cos(x)+sin(x)cos(x))(1−sin(x))
Step 2
Step 2.1
Apply the distributive property.
1cos(x)(1-sin(x))+sin(x)cos(x)(1-sin(x))1cos(x)(1−sin(x))+sin(x)cos(x)(1−sin(x))
Step 2.2
Apply the distributive property.
1cos(x)⋅1+1cos(x)(-sin(x))+sin(x)cos(x)(1-sin(x))1cos(x)⋅1+1cos(x)(−sin(x))+sin(x)cos(x)(1−sin(x))
Step 2.3
Apply the distributive property.
1cos(x)⋅1+1cos(x)(-sin(x))+sin(x)cos(x)⋅1+sin(x)cos(x)(-sin(x))1cos(x)⋅1+1cos(x)(−sin(x))+sin(x)cos(x)⋅1+sin(x)cos(x)(−sin(x))
1cos(x)⋅1+1cos(x)(-sin(x))+sin(x)cos(x)⋅1+sin(x)cos(x)(-sin(x))1cos(x)⋅1+1cos(x)(−sin(x))+sin(x)cos(x)⋅1+sin(x)cos(x)(−sin(x))
Step 3
Step 3.1
Simplify each term.
Step 3.1.1
Multiply 1cos(x)1cos(x) by 11.
1cos(x)+1cos(x)(-sin(x))+sin(x)cos(x)⋅1+sin(x)cos(x)(-sin(x))1cos(x)+1cos(x)(−sin(x))+sin(x)cos(x)⋅1+sin(x)cos(x)(−sin(x))
Step 3.1.2
Rewrite using the commutative property of multiplication.
1cos(x)-1cos(x)sin(x)+sin(x)cos(x)⋅1+sin(x)cos(x)(-sin(x))1cos(x)−1cos(x)sin(x)+sin(x)cos(x)⋅1+sin(x)cos(x)(−sin(x))
Step 3.1.3
Combine sin(x)sin(x) and 1cos(x)1cos(x).
1cos(x)-sin(x)cos(x)+sin(x)cos(x)⋅1+sin(x)cos(x)(-sin(x))1cos(x)−sin(x)cos(x)+sin(x)cos(x)⋅1+sin(x)cos(x)(−sin(x))
Step 3.1.4
Multiply sin(x)cos(x)sin(x)cos(x) by 11.
1cos(x)-sin(x)cos(x)+sin(x)cos(x)+sin(x)cos(x)(-sin(x))1cos(x)−sin(x)cos(x)+sin(x)cos(x)+sin(x)cos(x)(−sin(x))
Step 3.1.5
Rewrite using the commutative property of multiplication.
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin(x)cos(x)sin(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin(x)cos(x)sin(x)
Step 3.1.6
Multiply -sin(x)cos(x)sin(x)−sin(x)cos(x)sin(x).
Step 3.1.6.1
Combine sin(x)sin(x) and sin(x)cos(x)sin(x)cos(x).
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin(x)sin(x)cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin(x)sin(x)cos(x)
Step 3.1.6.2
Raise sin(x)sin(x) to the power of 11.
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin1(x)sin(x)cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin1(x)sin(x)cos(x)
Step 3.1.6.3
Raise sin(x)sin(x) to the power of 11.
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin1(x)sin1(x)cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin1(x)sin1(x)cos(x)
Step 3.1.6.4
Use the power rule aman=am+naman=am+n to combine exponents.
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin(x)1+1cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin(x)1+1cos(x)
Step 3.1.6.5
Add 11 and 11.
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin2(x)cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin2(x)cos(x)
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin2(x)cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin2(x)cos(x)
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin2(x)cos(x)1cos(x)−sin(x)cos(x)+sin(x)cos(x)−sin2(x)cos(x)
Step 3.2
Add -sin(x)cos(x)−sin(x)cos(x) and sin(x)cos(x)sin(x)cos(x).
1cos(x)+0-sin2(x)cos(x)1cos(x)+0−sin2(x)cos(x)
Step 3.3
Add 1cos(x)1cos(x) and 00.
1cos(x)-sin2(x)cos(x)1cos(x)−sin2(x)cos(x)
1cos(x)-sin2(x)cos(x)1cos(x)−sin2(x)cos(x)
Step 4
Combine the numerators over the common denominator.
1-sin2(x)cos(x)1−sin2(x)cos(x)
Step 5
Apply pythagorean identity.
cos2(x)cos(x)cos2(x)cos(x)
Step 6
Step 6.1
Factor cos(x)cos(x) out of cos2(x)cos2(x).
cos(x)cos(x)cos(x)cos(x)cos(x)cos(x)
Step 6.2
Cancel the common factors.
Step 6.2.1
Multiply by 11.
cos(x)cos(x)cos(x)⋅1cos(x)cos(x)cos(x)⋅1
Step 6.2.2
Cancel the common factor.
cos(x)cos(x)cos(x)⋅1
Step 6.2.3
Rewrite the expression.
cos(x)1
Step 6.2.4
Divide cos(x) by 1.
cos(x)
cos(x)
cos(x)