Trigonometry Examples

Simplify (sec(x)+tan(x))(1-sin(x))
(sec(x)+tan(x))(1-sin(x))(sec(x)+tan(x))(1sin(x))
Step 1
Simplify each term.
Tap for more steps...
Step 1.1
Rewrite sec(x)sec(x) in terms of sines and cosines.
(1cos(x)+tan(x))(1-sin(x))(1cos(x)+tan(x))(1sin(x))
Step 1.2
Rewrite tan(x)tan(x) in terms of sines and cosines.
(1cos(x)+sin(x)cos(x))(1-sin(x))(1cos(x)+sin(x)cos(x))(1sin(x))
(1cos(x)+sin(x)cos(x))(1-sin(x))(1cos(x)+sin(x)cos(x))(1sin(x))
Step 2
Expand (1cos(x)+sin(x)cos(x))(1-sin(x))(1cos(x)+sin(x)cos(x))(1sin(x)) using the FOIL Method.
Tap for more steps...
Step 2.1
Apply the distributive property.
1cos(x)(1-sin(x))+sin(x)cos(x)(1-sin(x))1cos(x)(1sin(x))+sin(x)cos(x)(1sin(x))
Step 2.2
Apply the distributive property.
1cos(x)1+1cos(x)(-sin(x))+sin(x)cos(x)(1-sin(x))1cos(x)1+1cos(x)(sin(x))+sin(x)cos(x)(1sin(x))
Step 2.3
Apply the distributive property.
1cos(x)1+1cos(x)(-sin(x))+sin(x)cos(x)1+sin(x)cos(x)(-sin(x))1cos(x)1+1cos(x)(sin(x))+sin(x)cos(x)1+sin(x)cos(x)(sin(x))
1cos(x)1+1cos(x)(-sin(x))+sin(x)cos(x)1+sin(x)cos(x)(-sin(x))1cos(x)1+1cos(x)(sin(x))+sin(x)cos(x)1+sin(x)cos(x)(sin(x))
Step 3
Simplify and combine like terms.
Tap for more steps...
Step 3.1
Simplify each term.
Tap for more steps...
Step 3.1.1
Multiply 1cos(x)1cos(x) by 11.
1cos(x)+1cos(x)(-sin(x))+sin(x)cos(x)1+sin(x)cos(x)(-sin(x))1cos(x)+1cos(x)(sin(x))+sin(x)cos(x)1+sin(x)cos(x)(sin(x))
Step 3.1.2
Rewrite using the commutative property of multiplication.
1cos(x)-1cos(x)sin(x)+sin(x)cos(x)1+sin(x)cos(x)(-sin(x))1cos(x)1cos(x)sin(x)+sin(x)cos(x)1+sin(x)cos(x)(sin(x))
Step 3.1.3
Combine sin(x)sin(x) and 1cos(x)1cos(x).
1cos(x)-sin(x)cos(x)+sin(x)cos(x)1+sin(x)cos(x)(-sin(x))1cos(x)sin(x)cos(x)+sin(x)cos(x)1+sin(x)cos(x)(sin(x))
Step 3.1.4
Multiply sin(x)cos(x)sin(x)cos(x) by 11.
1cos(x)-sin(x)cos(x)+sin(x)cos(x)+sin(x)cos(x)(-sin(x))1cos(x)sin(x)cos(x)+sin(x)cos(x)+sin(x)cos(x)(sin(x))
Step 3.1.5
Rewrite using the commutative property of multiplication.
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin(x)cos(x)sin(x)1cos(x)sin(x)cos(x)+sin(x)cos(x)sin(x)cos(x)sin(x)
Step 3.1.6
Multiply -sin(x)cos(x)sin(x)sin(x)cos(x)sin(x).
Tap for more steps...
Step 3.1.6.1
Combine sin(x)sin(x) and sin(x)cos(x)sin(x)cos(x).
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin(x)sin(x)cos(x)1cos(x)sin(x)cos(x)+sin(x)cos(x)sin(x)sin(x)cos(x)
Step 3.1.6.2
Raise sin(x)sin(x) to the power of 11.
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin1(x)sin(x)cos(x)1cos(x)sin(x)cos(x)+sin(x)cos(x)sin1(x)sin(x)cos(x)
Step 3.1.6.3
Raise sin(x)sin(x) to the power of 11.
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin1(x)sin1(x)cos(x)1cos(x)sin(x)cos(x)+sin(x)cos(x)sin1(x)sin1(x)cos(x)
Step 3.1.6.4
Use the power rule aman=am+naman=am+n to combine exponents.
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin(x)1+1cos(x)1cos(x)sin(x)cos(x)+sin(x)cos(x)sin(x)1+1cos(x)
Step 3.1.6.5
Add 11 and 11.
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin2(x)cos(x)1cos(x)sin(x)cos(x)+sin(x)cos(x)sin2(x)cos(x)
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin2(x)cos(x)1cos(x)sin(x)cos(x)+sin(x)cos(x)sin2(x)cos(x)
1cos(x)-sin(x)cos(x)+sin(x)cos(x)-sin2(x)cos(x)1cos(x)sin(x)cos(x)+sin(x)cos(x)sin2(x)cos(x)
Step 3.2
Add -sin(x)cos(x)sin(x)cos(x) and sin(x)cos(x)sin(x)cos(x).
1cos(x)+0-sin2(x)cos(x)1cos(x)+0sin2(x)cos(x)
Step 3.3
Add 1cos(x)1cos(x) and 00.
1cos(x)-sin2(x)cos(x)1cos(x)sin2(x)cos(x)
1cos(x)-sin2(x)cos(x)1cos(x)sin2(x)cos(x)
Step 4
Combine the numerators over the common denominator.
1-sin2(x)cos(x)1sin2(x)cos(x)
Step 5
Apply pythagorean identity.
cos2(x)cos(x)cos2(x)cos(x)
Step 6
Cancel the common factor of cos2(x)cos2(x) and cos(x)cos(x).
Tap for more steps...
Step 6.1
Factor cos(x)cos(x) out of cos2(x)cos2(x).
cos(x)cos(x)cos(x)cos(x)cos(x)cos(x)
Step 6.2
Cancel the common factors.
Tap for more steps...
Step 6.2.1
Multiply by 11.
cos(x)cos(x)cos(x)1cos(x)cos(x)cos(x)1
Step 6.2.2
Cancel the common factor.
cos(x)cos(x)cos(x)1
Step 6.2.3
Rewrite the expression.
cos(x)1
Step 6.2.4
Divide cos(x) by 1.
cos(x)
cos(x)
cos(x)
 [x2  12  π  xdx ]