Enter a problem...
Trigonometry Examples
3x-4y5(2x3y-7)-23x−4y5(2x3y−7)−2
Step 1
Step 1.1
Move x-4x−4 to the denominator using the negative exponent rule b-n=1bnb−n=1bn.
3y5(2x3y-7)-2x43y5(2x3y−7)−2x4
Step 1.2
Move (2x3y-7)-2(2x3y−7)−2 to the numerator using the negative exponent rule 1b-n=bn1b−n=bn.
3y5(2x3y-7)2x43y5(2x3y−7)2x4
3y5(2x3y-7)2x43y5(2x3y−7)2x4
Step 2
Step 2.1
Apply the product rule to 2x3y-72x3y−7.
3y5(2x3)2(y-7)2x43y5(2x3)2(y−7)2x4
Step 2.2
Apply the product rule to 2x32x3.
3y5(22(x3)2)(y-7)2x43y5(22(x3)2)(y−7)2x4
Step 2.3
Raise 22 to the power of 22.
3y5(4(x3)2)(y-7)2x43y5(4(x3)2)(y−7)2x4
Step 2.4
Multiply the exponents in (x3)2(x3)2.
Step 2.4.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
3y5(4x3⋅2)(y-7)2x43y5(4x3⋅2)(y−7)2x4
Step 2.4.2
Multiply 33 by 22.
3y5(4x6)(y-7)2x43y5(4x6)(y−7)2x4
3y5(4x6)(y-7)2x43y5(4x6)(y−7)2x4
Step 2.5
Multiply the exponents in (y-7)2(y−7)2.
Step 2.5.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
3y5(4x6)y-7⋅2x43y5(4x6)y−7⋅2x4
Step 2.5.2
Multiply -7−7 by 22.
3y5(4x6)y-14x43y5(4x6)y−14x4
3y5(4x6)y-14x43y5(4x6)y−14x4
Step 2.6
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
3y5⋅4x61y14x43y5⋅4x61y14x4
Step 2.7
Combine exponents.
Step 2.7.1
Multiply 44 by 33.
12y5x61y14x412y5x61y14x4
Step 2.7.2
Combine 1212 and 1y141y14.
y5x612y14x4y5x612y14x4
Step 2.7.3
Combine y5y5 and 12y1412y14.
x6y5⋅12y14x4x6y5⋅12y14x4
Step 2.7.4
Combine x6x6 and y5⋅12y14y5⋅12y14.
x6(y5⋅12)y14x4x6(y5⋅12)y14x4
x6(y5⋅12)y14x4x6(y5⋅12)y14x4
Step 2.8
Remove unnecessary parentheses.
x6y5⋅12y14x4x6y5⋅12y14x4
Step 2.9
Reduce the expression x6y5⋅12y14x6y5⋅12y14 by cancelling the common factors.
Step 2.9.1
Factor y5y5 out of x6y5⋅12x6y5⋅12.
y5(x6⋅12)y14x4y5(x6⋅12)y14x4
Step 2.9.2
Factor y5y5 out of y14y14.
y5(x6⋅12)y5y9x4y5(x6⋅12)y5y9x4
Step 2.9.3
Cancel the common factor.
y5(x6⋅12)y5y9x4
Step 2.9.4
Rewrite the expression.
x6⋅12y9x4
x6⋅12y9x4
Step 2.10
Move 12 to the left of x6.
12x6y9x4
12x6y9x4
Step 3
Multiply the numerator by the reciprocal of the denominator.
12x6y9⋅1x4
Step 4
Combine.
12x6⋅1y9x4
Step 5
Step 5.1
Factor x4 out of 12x6⋅1.
x4(12x2⋅1)y9x4
Step 5.2
Cancel the common factors.
Step 5.2.1
Factor x4 out of y9x4.
x4(12x2⋅1)x4y9
Step 5.2.2
Cancel the common factor.
x4(12x2⋅1)x4y9
Step 5.2.3
Rewrite the expression.
12x2⋅1y9
12x2⋅1y9
12x2⋅1y9
Step 6
Multiply 12 by 1.
12x2y9