Enter a problem...
Trigonometry Examples
sin(x)+sin(x)cot2(x)sin(x)+sin(x)cot2(x)
Step 1
Multiply by 11.
sin(x)⋅1+sin(x)cot2(x)sin(x)⋅1+sin(x)cot2(x)
Step 2
Step 2.1
Factor sin(x)sin(x) out of sin(x)cot2(x)sin(x)cot2(x).
sin(x)⋅1+sin(x)(cot2(x))sin(x)⋅1+sin(x)(cot2(x))
Step 2.2
Factor sin(x)sin(x) out of sin(x)⋅1+sin(x)(cot2(x))sin(x)⋅1+sin(x)(cot2(x)).
sin(x)⋅(1+cot2(x))sin(x)⋅(1+cot2(x))
sin(x)⋅(1+cot2(x))sin(x)⋅(1+cot2(x))
Step 3
Apply pythagorean identity.
sin(x)⋅csc2(x)sin(x)⋅csc2(x)
Step 4
Rewrite csc(x)csc(x) in terms of sines and cosines.
sin(x)⋅(1sin(x))2sin(x)⋅(1sin(x))2
Step 5
Step 5.1
Apply the product rule to 1sin(x)1sin(x).
sin(x)⋅12sin2(x)sin(x)⋅12sin2(x)
Step 5.2
One to any power is one.
sin(x)⋅1sin2(x)sin(x)⋅1sin2(x)
sin(x)⋅1sin2(x)sin(x)⋅1sin2(x)
Step 6
Step 6.1
Factor sin(x)sin(x) out of sin2(x)sin2(x).
sin(x)⋅1sin(x)sin(x)sin(x)⋅1sin(x)sin(x)
Step 6.2
Cancel the common factor.
sin(x)⋅1sin(x)sin(x)
Step 6.3
Rewrite the expression.
1sin(x)
1sin(x)
Step 7
Convert from 1sin(x) to csc(x).
csc(x)