Enter a problem...
Trigonometry Examples
tan(165)tan(165)
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
-tan(15)−tan(15)
Split 1515 into two angles where the values of the six trigonometric functions are known.
-tan(45-30)−tan(45−30)
Separate negation.
-tan(45-(30))−tan(45−(30))
Apply the difference of angles identity.
-tan(45)-tan(30)1+tan(45)tan(30)−tan(45)−tan(30)1+tan(45)tan(30)
The exact value of tan(45)tan(45) is 11.
-1-tan(30)1+tan(45)tan(30)−1−tan(30)1+tan(45)tan(30)
The exact value of tan(30)tan(30) is √33√33.
-1-√331+tan(45)tan(30)−1−√331+tan(45)tan(30)
The exact value of tan(45)tan(45) is 11.
-1-√331+1tan(30)−1−√331+1tan(30)
The exact value of tan(30)tan(30) is √33√33.
-1-√331+1√33−1−√331+1√33
Multiply the numerator and denominator of the complex fraction by 33.
Multiply 1-√331+1√331−√331+1√33 by 3333.
-(33⋅1-√331+1√33)−⎛⎜⎝33⋅1−√331+1√33⎞⎟⎠
Combine.
-3(1-√33)3(1+1√33)−3(1−√33)3(1+1√33)
-3(1-√33)3(1+1√33)−3(1−√33)3(1+1√33)
Apply the distributive property.
-3⋅1+3(-√33)3⋅1+3(1√33)−3⋅1+3(−√33)3⋅1+3(1√33)
Cancel the common factor of 33.
Move the leading negative in -√33−√33 into the numerator.
-3⋅1+3-√333⋅1+3(1√33)−3⋅1+3−√333⋅1+3(1√33)
Cancel the common factor.
-3⋅1+3-√333⋅1+3(1√33)
Rewrite the expression.
-3⋅1-√33⋅1+3(1√33)
-3⋅1-√33⋅1+3(1√33)
Multiply 3 by 1.
-3-√33⋅1+3⋅1√33
Simplify the denominator.
Multiply 3 by 1.
-3-√33+3⋅1√33
Cancel the common factor of 3.
Factor 3 out of 3⋅1.
-3-√33+3(1)√33
Cancel the common factor.
-3-√33+3⋅1√33
Rewrite the expression.
-3-√33+√3
-3-√33+√3
-3-√33+√3
Multiply 3-√33+√3 by 3-√33-√3.
-(3-√33+√3⋅3-√33-√3)
Multiply 3-√33+√3 by 3-√33-√3.
-(3-√3)(3-√3)(3+√3)(3-√3)
Expand the denominator using the FOIL method.
-(3-√3)(3-√3)9-3√3+√3⋅3-√32
Simplify.
-(3-√3)(3-√3)6
Simplify the numerator.
Raise 3-√3 to the power of 1.
-(3-√3)1(3-√3)6
Raise 3-√3 to the power of 1.
-(3-√3)1(3-√3)16
Use the power rule aman=am+n to combine exponents.
-(3-√3)1+16
Add 1 and 1.
-(3-√3)26
-(3-√3)26
Rewrite (3-√3)2 as (3-√3)(3-√3).
-(3-√3)(3-√3)6
Expand (3-√3)(3-√3) using the FOIL Method.
Apply the distributive property.
-3(3-√3)-√3(3-√3)6
Apply the distributive property.
-3⋅3+3(-√3)-√3(3-√3)6
Apply the distributive property.
-3⋅3+3(-√3)-√3⋅3-√3(-√3)6
-3⋅3+3(-√3)-√3⋅3-√3(-√3)6
Simplify and combine like terms.
Simplify each term.
Multiply 3 by 3.
-9+3(-√3)-√3⋅3-√3(-√3)6
Multiply -1 by 3.
-9-3√3-√3⋅3-√3(-√3)6
Multiply 3 by -1.
-9-3√3-3√3-√3(-√3)6
Multiply -√3(-√3).
Multiply -1 by -1.
-9-3√3-3√3+1√3√36
Multiply √3 by 1.
-9-3√3-3√3+√3√36
Raise √3 to the power of 1.
-9-3√3-3√3+√31√36
Raise √3 to the power of 1.
-9-3√3-3√3+√31√316
Use the power rule aman=am+n to combine exponents.
-9-3√3-3√3+√31+16
Add 1 and 1.
-9-3√3-3√3+√326
-9-3√3-3√3+√326
Rewrite √32 as 3.
Use n√ax=axn to rewrite √3 as 312.
-9-3√3-3√3+(312)26
Apply the power rule and multiply exponents, (am)n=amn.
-9-3√3-3√3+312⋅26
Combine 12 and 2.
-9-3√3-3√3+3226
Cancel the common factor of 2.
Cancel the common factor.
-9-3√3-3√3+3226
Rewrite the expression.
-9-3√3-3√3+316
-9-3√3-3√3+316
Evaluate the exponent.
-9-3√3-3√3+36
-9-3√3-3√3+36
-9-3√3-3√3+36
Add 9 and 3.
-12-3√3-3√36
Subtract 3√3 from -3√3.
-12-6√36
-12-6√36
Cancel the common factor of 12-6√3 and 6.
Factor 6 out of 12.
-6⋅2-6√36
Factor 6 out of -6√3.
-6⋅2+6(-√3)6
Factor 6 out of 6(2)+6(-√3).
-6(2-√3)6
Cancel the common factors.
Factor 6 out of 6.
-6(2-√3)6(1)
Cancel the common factor.
-6(2-√3)6⋅1
Rewrite the expression.
-2-√31
Divide 2-√3 by 1.
-(2-√3)
-(2-√3)
-(2-√3)
Apply the distributive property.
-1⋅2--√3
Multiply -1 by 2.
-2--√3
Multiply --√3.
Multiply -1 by -1.
-2+1√3
Multiply √3 by 1.
-2+√3
-2+√3
-2+√3
The result can be shown in multiple forms.
Exact Form:
-2+√3
Decimal Form:
-0.26794919…