Trigonometry Examples

Simplify tan(165)
tan(165)tan(165)
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
-tan(15)tan(15)
Split 1515 into two angles where the values of the six trigonometric functions are known.
-tan(45-30)tan(4530)
Separate negation.
-tan(45-(30))tan(45(30))
Apply the difference of angles identity.
-tan(45)-tan(30)1+tan(45)tan(30)tan(45)tan(30)1+tan(45)tan(30)
The exact value of tan(45)tan(45) is 11.
-1-tan(30)1+tan(45)tan(30)1tan(30)1+tan(45)tan(30)
The exact value of tan(30)tan(30) is 3333.
-1-331+tan(45)tan(30)1331+tan(45)tan(30)
The exact value of tan(45)tan(45) is 11.
-1-331+1tan(30)1331+1tan(30)
The exact value of tan(30)tan(30) is 3333.
-1-331+1331331+133
Simplify -1-331+1331331+133.
Tap for more steps...
Multiply the numerator and denominator of the complex fraction by 33.
Tap for more steps...
Multiply 1-331+1331331+133 by 3333.
-(331-331+133)331331+133
Combine.
-3(1-33)3(1+133)3(133)3(1+133)
-3(1-33)3(1+133)3(133)3(1+133)
Apply the distributive property.
-31+3(-33)31+3(133)31+3(33)31+3(133)
Cancel the common factor of 33.
Tap for more steps...
Move the leading negative in -3333 into the numerator.
-31+3-3331+3(133)31+33331+3(133)
Cancel the common factor.
-31+3-3331+3(133)
Rewrite the expression.
-31-331+3(133)
-31-331+3(133)
Multiply 3 by 1.
-3-331+3133
Simplify the denominator.
Tap for more steps...
Multiply 3 by 1.
-3-33+3133
Cancel the common factor of 3.
Tap for more steps...
Factor 3 out of 31.
-3-33+3(1)33
Cancel the common factor.
-3-33+3133
Rewrite the expression.
-3-33+3
-3-33+3
-3-33+3
Multiply 3-33+3 by 3-33-3.
-(3-33+33-33-3)
Multiply 3-33+3 by 3-33-3.
-(3-3)(3-3)(3+3)(3-3)
Expand the denominator using the FOIL method.
-(3-3)(3-3)9-33+33-32
Simplify.
-(3-3)(3-3)6
Simplify the numerator.
Tap for more steps...
Raise 3-3 to the power of 1.
-(3-3)1(3-3)6
Raise 3-3 to the power of 1.
-(3-3)1(3-3)16
Use the power rule aman=am+n to combine exponents.
-(3-3)1+16
Add 1 and 1.
-(3-3)26
-(3-3)26
Rewrite (3-3)2 as (3-3)(3-3).
-(3-3)(3-3)6
Expand (3-3)(3-3) using the FOIL Method.
Tap for more steps...
Apply the distributive property.
-3(3-3)-3(3-3)6
Apply the distributive property.
-33+3(-3)-3(3-3)6
Apply the distributive property.
-33+3(-3)-33-3(-3)6
-33+3(-3)-33-3(-3)6
Simplify and combine like terms.
Tap for more steps...
Simplify each term.
Tap for more steps...
Multiply 3 by 3.
-9+3(-3)-33-3(-3)6
Multiply -1 by 3.
-9-33-33-3(-3)6
Multiply 3 by -1.
-9-33-33-3(-3)6
Multiply -3(-3).
Tap for more steps...
Multiply -1 by -1.
-9-33-33+1336
Multiply 3 by 1.
-9-33-33+336
Raise 3 to the power of 1.
-9-33-33+3136
Raise 3 to the power of 1.
-9-33-33+31316
Use the power rule aman=am+n to combine exponents.
-9-33-33+31+16
Add 1 and 1.
-9-33-33+326
-9-33-33+326
Rewrite 32 as 3.
Tap for more steps...
Use nax=axn to rewrite 3 as 312.
-9-33-33+(312)26
Apply the power rule and multiply exponents, (am)n=amn.
-9-33-33+31226
Combine 12 and 2.
-9-33-33+3226
Cancel the common factor of 2.
Tap for more steps...
Cancel the common factor.
-9-33-33+3226
Rewrite the expression.
-9-33-33+316
-9-33-33+316
Evaluate the exponent.
-9-33-33+36
-9-33-33+36
-9-33-33+36
Add 9 and 3.
-12-33-336
Subtract 33 from -33.
-12-636
-12-636
Cancel the common factor of 12-63 and 6.
Tap for more steps...
Factor 6 out of 12.
-62-636
Factor 6 out of -63.
-62+6(-3)6
Factor 6 out of 6(2)+6(-3).
-6(2-3)6
Cancel the common factors.
Tap for more steps...
Factor 6 out of 6.
-6(2-3)6(1)
Cancel the common factor.
-6(2-3)61
Rewrite the expression.
-2-31
Divide 2-3 by 1.
-(2-3)
-(2-3)
-(2-3)
Apply the distributive property.
-12--3
Multiply -1 by 2.
-2--3
Multiply --3.
Tap for more steps...
Multiply -1 by -1.
-2+13
Multiply 3 by 1.
-2+3
-2+3
-2+3
The result can be shown in multiple forms.
Exact Form:
-2+3
Decimal Form:
-0.26794919
(
(
)
)
|
|
[
[
]
]
°
°
7
7
8
8
9
9
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
Cookies & Privacy
This website uses cookies to ensure you get the best experience on our website.
More Information
 [x2  12  π  xdx ]