Trigonometry Examples

Simplify ( square root of 2-i)^4
(2-i)4
Step 1
Use the Binomial Theorem.
24+423(-i)+622(-i)2+42(-i)3+(-i)4
Step 2
Simplify terms.
Tap for more steps...
Step 2.1
Simplify each term.
Tap for more steps...
Step 2.1.1
Rewrite 24 as 22.
Tap for more steps...
Step 2.1.1.1
Use nax=axn to rewrite 2 as 212.
(212)4+423(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
2124+423(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.1.3
Combine 12 and 4.
242+423(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.1.4
Cancel the common factor of 4 and 2.
Tap for more steps...
Step 2.1.1.4.1
Factor 2 out of 4.
2222+423(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.1.4.2
Cancel the common factors.
Tap for more steps...
Step 2.1.1.4.2.1
Factor 2 out of 2.
2222(1)+423(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.1.4.2.2
Cancel the common factor.
22221+423(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.1.4.2.3
Rewrite the expression.
221+423(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.1.4.2.4
Divide 2 by 1.
22+423(-i)+622(-i)2+42(-i)3+(-i)4
22+423(-i)+622(-i)2+42(-i)3+(-i)4
22+423(-i)+622(-i)2+42(-i)3+(-i)4
22+423(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.2
Raise 2 to the power of 2.
4+423(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.3
Rewrite 23 as 23.
4+423(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.4
Raise 2 to the power of 3.
4+48(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.5
Rewrite 8 as 222.
Tap for more steps...
Step 2.1.5.1
Factor 4 out of 8.
4+44(2)(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.5.2
Rewrite 4 as 22.
4+4222(-i)+622(-i)2+42(-i)3+(-i)4
4+4222(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.6
Pull terms out from under the radical.
4+4(22)(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.7
Multiply 2 by 4.
4+82(-i)+622(-i)2+42(-i)3+(-i)4
Step 2.1.8
Multiply -1 by 8.
4-82i+622(-i)2+42(-i)3+(-i)4
Step 2.1.9
Rewrite 22 as 2.
Tap for more steps...
Step 2.1.9.1
Use nax=axn to rewrite 2 as 212.
4-82i+6(212)2(-i)2+42(-i)3+(-i)4
Step 2.1.9.2
Apply the power rule and multiply exponents, (am)n=amn.
4-82i+62122(-i)2+42(-i)3+(-i)4
Step 2.1.9.3
Combine 12 and 2.
4-82i+6222(-i)2+42(-i)3+(-i)4
Step 2.1.9.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.1.9.4.1
Cancel the common factor.
4-82i+6222(-i)2+42(-i)3+(-i)4
Step 2.1.9.4.2
Rewrite the expression.
4-82i+621(-i)2+42(-i)3+(-i)4
4-82i+621(-i)2+42(-i)3+(-i)4
Step 2.1.9.5
Evaluate the exponent.
4-82i+62(-i)2+42(-i)3+(-i)4
4-82i+62(-i)2+42(-i)3+(-i)4
Step 2.1.10
Multiply 6 by 2.
4-82i+12(-i)2+42(-i)3+(-i)4
Step 2.1.11
Apply the product rule to -i.
4-82i+12((-1)2i2)+42(-i)3+(-i)4
Step 2.1.12
Raise -1 to the power of 2.
4-82i+12(1i2)+42(-i)3+(-i)4
Step 2.1.13
Multiply i2 by 1.
4-82i+12i2+42(-i)3+(-i)4
Step 2.1.14
Rewrite i2 as -1.
4-82i+12-1+42(-i)3+(-i)4
Step 2.1.15
Multiply 12 by -1.
4-82i-12+42(-i)3+(-i)4
Step 2.1.16
Apply the product rule to -i.
4-82i-12+42((-1)3i3)+(-i)4
Step 2.1.17
Raise -1 to the power of 3.
4-82i-12+42(-i3)+(-i)4
Step 2.1.18
Factor out i2.
4-82i-12+42(-(i2i))+(-i)4
Step 2.1.19
Rewrite i2 as -1.
4-82i-12+42(-(-1i))+(-i)4
Step 2.1.20
Rewrite -1i as -i.
4-82i-12+42(--i)+(-i)4
Step 2.1.21
Multiply -1 by -1.
4-82i-12+42(1i)+(-i)4
Step 2.1.22
Multiply i by 1.
4-82i-12+42i+(-i)4
Step 2.1.23
Apply the product rule to -i.
4-82i-12+42i+(-1)4i4
Step 2.1.24
Raise -1 to the power of 4.
4-82i-12+42i+1i4
Step 2.1.25
Multiply i4 by 1.
4-82i-12+42i+i4
Step 2.1.26
Rewrite i4 as 1.
Tap for more steps...
Step 2.1.26.1
Rewrite i4 as (i2)2.
4-82i-12+42i+(i2)2
Step 2.1.26.2
Rewrite i2 as -1.
4-82i-12+42i+(-1)2
Step 2.1.26.3
Raise -1 to the power of 2.
4-82i-12+42i+1
4-82i-12+42i+1
4-82i-12+42i+1
Step 2.2
Simplify by adding terms.
Tap for more steps...
Step 2.2.1
Subtract 12 from 4.
-82i-8+42i+1
Step 2.2.2
Add -82i and 42i.
-42i-8+1
Step 2.2.3
Simplify the expression.
Tap for more steps...
Step 2.2.3.1
Add -8 and 1.
-42i-7
Step 2.2.3.2
Reorder -42i and -7.
-7-42i
-7-42i
-7-42i
-7-42i
 [x2  12  π  xdx ]