Enter a problem...
Trigonometry Examples
(√2-i)4
Step 1
Use the Binomial Theorem.
√24+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2
Step 2.1
Simplify each term.
Step 2.1.1
Rewrite √24 as 22.
Step 2.1.1.1
Use n√ax=axn to rewrite √2 as 212.
(212)4+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.1.2
Apply the power rule and multiply exponents, (am)n=amn.
212⋅4+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.1.3
Combine 12 and 4.
242+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.1.4
Cancel the common factor of 4 and 2.
Step 2.1.1.4.1
Factor 2 out of 4.
22⋅22+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.1.4.2
Cancel the common factors.
Step 2.1.1.4.2.1
Factor 2 out of 2.
22⋅22(1)+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.1.4.2.2
Cancel the common factor.
22⋅22⋅1+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.1.4.2.3
Rewrite the expression.
221+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.1.4.2.4
Divide 2 by 1.
22+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
22+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
22+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
22+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.2
Raise 2 to the power of 2.
4+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.3
Rewrite √23 as √23.
4+4√23(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.4
Raise 2 to the power of 3.
4+4√8(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.5
Rewrite 8 as 22⋅2.
Step 2.1.5.1
Factor 4 out of 8.
4+4√4(2)(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.5.2
Rewrite 4 as 22.
4+4√22⋅2(-i)+6√22(-i)2+4√2(-i)3+(-i)4
4+4√22⋅2(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.6
Pull terms out from under the radical.
4+4(2√2)(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.7
Multiply 2 by 4.
4+8√2(-i)+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.8
Multiply -1 by 8.
4-8√2i+6√22(-i)2+4√2(-i)3+(-i)4
Step 2.1.9
Rewrite √22 as 2.
Step 2.1.9.1
Use n√ax=axn to rewrite √2 as 212.
4-8√2i+6(212)2(-i)2+4√2(-i)3+(-i)4
Step 2.1.9.2
Apply the power rule and multiply exponents, (am)n=amn.
4-8√2i+6⋅212⋅2(-i)2+4√2(-i)3+(-i)4
Step 2.1.9.3
Combine 12 and 2.
4-8√2i+6⋅222(-i)2+4√2(-i)3+(-i)4
Step 2.1.9.4
Cancel the common factor of 2.
Step 2.1.9.4.1
Cancel the common factor.
4-8√2i+6⋅222(-i)2+4√2(-i)3+(-i)4
Step 2.1.9.4.2
Rewrite the expression.
4-8√2i+6⋅21(-i)2+4√2(-i)3+(-i)4
4-8√2i+6⋅21(-i)2+4√2(-i)3+(-i)4
Step 2.1.9.5
Evaluate the exponent.
4-8√2i+6⋅2(-i)2+4√2(-i)3+(-i)4
4-8√2i+6⋅2(-i)2+4√2(-i)3+(-i)4
Step 2.1.10
Multiply 6 by 2.
4-8√2i+12(-i)2+4√2(-i)3+(-i)4
Step 2.1.11
Apply the product rule to -i.
4-8√2i+12((-1)2i2)+4√2(-i)3+(-i)4
Step 2.1.12
Raise -1 to the power of 2.
4-8√2i+12(1i2)+4√2(-i)3+(-i)4
Step 2.1.13
Multiply i2 by 1.
4-8√2i+12i2+4√2(-i)3+(-i)4
Step 2.1.14
Rewrite i2 as -1.
4-8√2i+12⋅-1+4√2(-i)3+(-i)4
Step 2.1.15
Multiply 12 by -1.
4-8√2i-12+4√2(-i)3+(-i)4
Step 2.1.16
Apply the product rule to -i.
4-8√2i-12+4√2((-1)3i3)+(-i)4
Step 2.1.17
Raise -1 to the power of 3.
4-8√2i-12+4√2(-i3)+(-i)4
Step 2.1.18
Factor out i2.
4-8√2i-12+4√2(-(i2⋅i))+(-i)4
Step 2.1.19
Rewrite i2 as -1.
4-8√2i-12+4√2(-(-1⋅i))+(-i)4
Step 2.1.20
Rewrite -1i as -i.
4-8√2i-12+4√2(--i)+(-i)4
Step 2.1.21
Multiply -1 by -1.
4-8√2i-12+4√2(1i)+(-i)4
Step 2.1.22
Multiply i by 1.
4-8√2i-12+4√2i+(-i)4
Step 2.1.23
Apply the product rule to -i.
4-8√2i-12+4√2i+(-1)4i4
Step 2.1.24
Raise -1 to the power of 4.
4-8√2i-12+4√2i+1i4
Step 2.1.25
Multiply i4 by 1.
4-8√2i-12+4√2i+i4
Step 2.1.26
Rewrite i4 as 1.
Step 2.1.26.1
Rewrite i4 as (i2)2.
4-8√2i-12+4√2i+(i2)2
Step 2.1.26.2
Rewrite i2 as -1.
4-8√2i-12+4√2i+(-1)2
Step 2.1.26.3
Raise -1 to the power of 2.
4-8√2i-12+4√2i+1
4-8√2i-12+4√2i+1
4-8√2i-12+4√2i+1
Step 2.2
Simplify by adding terms.
Step 2.2.1
Subtract 12 from 4.
-8√2i-8+4√2i+1
Step 2.2.2
Add -8√2i and 4√2i.
-4√2i-8+1
Step 2.2.3
Simplify the expression.
Step 2.2.3.1
Add -8 and 1.
-4√2i-7
Step 2.2.3.2
Reorder -4√2i and -7.
-7-4√2i
-7-4√2i
-7-4√2i
-7-4√2i