Enter a problem...
Trigonometry Examples
cos(165)cos(165)
Step 1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
-cos(15)−cos(15)
Step 2
Split 1515 into two angles where the values of the six trigonometric functions are known.
-cos(45-30)−cos(45−30)
Step 3
Separate negation.
-cos(45-(30))−cos(45−(30))
Step 4
Apply the difference of angles identity cos(x-y)=cos(x)cos(y)+sin(x)sin(y)cos(x−y)=cos(x)cos(y)+sin(x)sin(y).
-(cos(45)cos(30)+sin(45)sin(30))−(cos(45)cos(30)+sin(45)sin(30))
Step 5
The exact value of cos(45)cos(45) is √22√22.
-(√22cos(30)+sin(45)sin(30))−(√22cos(30)+sin(45)sin(30))
Step 6
The exact value of cos(30)cos(30) is √32√32.
-(√22⋅√32+sin(45)sin(30))−(√22⋅√32+sin(45)sin(30))
Step 7
The exact value of sin(45)sin(45) is √22√22.
-(√22⋅√32+√22sin(30))−(√22⋅√32+√22sin(30))
Step 8
The exact value of sin(30)sin(30) is 1212.
-(√22⋅√32+√22⋅12)−(√22⋅√32+√22⋅12)
Step 9
Step 9.1
Simplify each term.
Step 9.1.1
Multiply √22⋅√32√22⋅√32.
Step 9.1.1.1
Multiply √22√22 by √32√32.
-(√2√32⋅2+√22⋅12)−(√2√32⋅2+√22⋅12)
Step 9.1.1.2
Combine using the product rule for radicals.
-(√2⋅32⋅2+√22⋅12)−(√2⋅32⋅2+√22⋅12)
Step 9.1.1.3
Multiply 22 by 33.
-(√62⋅2+√22⋅12)−(√62⋅2+√22⋅12)
Step 9.1.1.4
Multiply 22 by 22.
-(√64+√22⋅12)−(√64+√22⋅12)
-(√64+√22⋅12)−(√64+√22⋅12)
Step 9.1.2
Multiply √22⋅12√22⋅12.
Step 9.1.2.1
Multiply √22√22 by 1212.
-(√64+√22⋅2)−(√64+√22⋅2)
Step 9.1.2.2
Multiply 22 by 22.
-(√64+√24)−(√64+√24)
-(√64+√24)−(√64+√24)
-(√64+√24)−(√64+√24)
Step 9.2
Combine the numerators over the common denominator.
-√6+√24
-√6+√24
Step 10
The result can be shown in multiple forms.
Exact Form:
-√6+√24
Decimal Form:
-0.96592582…