Trigonometry Examples

Find the Exact Value cos(165)
cos(165)cos(165)
Step 1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
-cos(15)cos(15)
Step 2
Split 1515 into two angles where the values of the six trigonometric functions are known.
-cos(45-30)cos(4530)
Step 3
Separate negation.
-cos(45-(30))cos(45(30))
Step 4
Apply the difference of angles identity cos(x-y)=cos(x)cos(y)+sin(x)sin(y)cos(xy)=cos(x)cos(y)+sin(x)sin(y).
-(cos(45)cos(30)+sin(45)sin(30))(cos(45)cos(30)+sin(45)sin(30))
Step 5
The exact value of cos(45)cos(45) is 2222.
-(22cos(30)+sin(45)sin(30))(22cos(30)+sin(45)sin(30))
Step 6
The exact value of cos(30)cos(30) is 3232.
-(2232+sin(45)sin(30))(2232+sin(45)sin(30))
Step 7
The exact value of sin(45)sin(45) is 2222.
-(2232+22sin(30))(2232+22sin(30))
Step 8
The exact value of sin(30)sin(30) is 1212.
-(2232+2212)(2232+2212)
Step 9
Simplify -(2232+2212)(2232+2212).
Tap for more steps...
Step 9.1
Simplify each term.
Tap for more steps...
Step 9.1.1
Multiply 22322232.
Tap for more steps...
Step 9.1.1.1
Multiply 2222 by 3232.
-(2322+2212)(2322+2212)
Step 9.1.1.2
Combine using the product rule for radicals.
-(2322+2212)(2322+2212)
Step 9.1.1.3
Multiply 22 by 33.
-(622+2212)(622+2212)
Step 9.1.1.4
Multiply 22 by 22.
-(64+2212)(64+2212)
-(64+2212)(64+2212)
Step 9.1.2
Multiply 22122212.
Tap for more steps...
Step 9.1.2.1
Multiply 2222 by 1212.
-(64+222)(64+222)
Step 9.1.2.2
Multiply 22 by 22.
-(64+24)(64+24)
-(64+24)(64+24)
-(64+24)(64+24)
Step 9.2
Combine the numerators over the common denominator.
-6+24
-6+24
Step 10
The result can be shown in multiple forms.
Exact Form:
-6+24
Decimal Form:
-0.96592582
(
(
)
)
|
|
[
[
]
]
°
°
7
7
8
8
9
9
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]