Trigonometry Examples

Verify the Identity (cot(x)^2)/(csc(x))=csc(x)-sin(x)
cot2(x)csc(x)=csc(x)-sin(x)
Step 1
Start on the left side.
cot2(x)csc(x)
Step 2
Apply Pythagorean identity in reverse.
csc2(x)-1csc(x)
Step 3
Convert to sines and cosines.
Tap for more steps...
Step 3.1
Apply the reciprocal identity to csc(x).
(1sin(x))2-1csc(x)
Step 3.2
Apply the reciprocal identity to csc(x).
(1sin(x))2-11sin(x)
Step 3.3
Apply the product rule to 1sin(x).
12sin2(x)-11sin(x)
12sin2(x)-11sin(x)
Step 4
Simplify.
Tap for more steps...
Step 4.1
Multiply the numerator by the reciprocal of the denominator.
(12sin(x)2-1)sin(x)
Step 4.2
One to any power is one.
(1sin(x)2-1)sin(x)
Step 4.3
Apply the distributive property.
1sin(x)2sin(x)-1sin(x)
Step 4.4
Cancel the common factor of sin(x).
Tap for more steps...
Step 4.4.1
Factor sin(x) out of sin(x)2.
1sin(x)sin(x)sin(x)-1sin(x)
Step 4.4.2
Cancel the common factor.
1sin(x)sin(x)sin(x)-1sin(x)
Step 4.4.3
Rewrite the expression.
1sin(x)-1sin(x)
1sin(x)-1sin(x)
Step 4.5
Rewrite -1sin(x) as -sin(x).
1sin(x)-sin(x)
1sin(x)-sin(x)
Step 5
Now consider the right side of the equation.
csc(x)-sin(x)
Step 6
Apply the reciprocal identity to csc(x).
1sin(x)-sin(x)
Step 7
Because the two sides have been shown to be equivalent, the equation is an identity.
cot2(x)csc(x)=csc(x)-sin(x) is an identity
cot2(x)csc(x)=csc(x)-sin(x)
(
(
)
)
|
|
[
[
]
]
°
°
7
7
8
8
9
9
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]