Enter a problem...
Trigonometry Examples
y=csc(πx2)y=csc(πx2)
Step 1
Step 1.1
For any y=csc(x)y=csc(x), vertical asymptotes occur at x=nπx=nπ, where nn is an integer. Use the basic period for y=csc(x)y=csc(x), (0,2π)(0,2π), to find the vertical asymptotes for y=csc(πx2)y=csc(πx2). Set the inside of the cosecant function, bx+cbx+c, for y=acsc(bx+c)+dy=acsc(bx+c)+d equal to 00 to find where the vertical asymptote occurs for y=csc(πx2)y=csc(πx2).
πx2=0πx2=0
Step 1.2
Solve for xx.
Step 1.2.1
Set the numerator equal to zero.
πx=0πx=0
Step 1.2.2
Divide each term in πx=0πx=0 by ππ and simplify.
Step 1.2.2.1
Divide each term in πx=0πx=0 by ππ.
πxπ=0ππxπ=0π
Step 1.2.2.2
Simplify the left side.
Step 1.2.2.2.1
Cancel the common factor of ππ.
Step 1.2.2.2.1.1
Cancel the common factor.
πxπ=0π
Step 1.2.2.2.1.2
Divide x by 1.
x=0π
x=0π
x=0π
Step 1.2.2.3
Simplify the right side.
Step 1.2.2.3.1
Divide 0 by π.
x=0
x=0
x=0
x=0
Step 1.3
Set the inside of the cosecant function πx2 equal to 2π.
πx2=2π
Step 1.4
Solve for x.
Step 1.4.1
Multiply both sides of the equation by 2π.
2π⋅πx2=2π(2π)
Step 1.4.2
Simplify both sides of the equation.
Step 1.4.2.1
Simplify the left side.
Step 1.4.2.1.1
Simplify 2π⋅πx2.
Step 1.4.2.1.1.1
Cancel the common factor of 2.
Step 1.4.2.1.1.1.1
Cancel the common factor.
2π⋅πx2=2π(2π)
Step 1.4.2.1.1.1.2
Rewrite the expression.
1π(πx)=2π(2π)
1π(πx)=2π(2π)
Step 1.4.2.1.1.2
Cancel the common factor of π.
Step 1.4.2.1.1.2.1
Factor π out of πx.
1π(π(x))=2π(2π)
Step 1.4.2.1.1.2.2
Cancel the common factor.
1π(πx)=2π(2π)
Step 1.4.2.1.1.2.3
Rewrite the expression.
x=2π(2π)
x=2π(2π)
x=2π(2π)
x=2π(2π)
Step 1.4.2.2
Simplify the right side.
Step 1.4.2.2.1
Simplify 2π(2π).
Step 1.4.2.2.1.1
Cancel the common factor of π.
Step 1.4.2.2.1.1.1
Factor π out of 2π.
x=2π(π⋅2)
Step 1.4.2.2.1.1.2
Cancel the common factor.
x=2π(π⋅2)
Step 1.4.2.2.1.1.3
Rewrite the expression.
x=2⋅2
x=2⋅2
Step 1.4.2.2.1.2
Multiply 2 by 2.
x=4
x=4
x=4
x=4
x=4
Step 1.5
The basic period for y=csc(πx2) will occur at (0,4), where 0 and 4 are vertical asymptotes.
(0,4)
Step 1.6
Find the period 2π|b| to find where the vertical asymptotes exist. Vertical asymptotes occur every half period.
Step 1.6.1
π2 is approximately 1.57079632 which is positive so remove the absolute value
2ππ2
Step 1.6.2
Multiply the numerator by the reciprocal of the denominator.
2π2π
Step 1.6.3
Cancel the common factor of π.
Step 1.6.3.1
Factor π out of 2π.
π⋅22π
Step 1.6.3.2
Cancel the common factor.
π⋅22π
Step 1.6.3.3
Rewrite the expression.
2⋅2
2⋅2
Step 1.6.4
Multiply 2 by 2.
4
4
Step 1.7
The vertical asymptotes for y=csc(πx2) occur at 0, 4, and every 2n, where n is an integer. This is half of the period.
x=2n
Step 1.8
Cosecant only has vertical asymptotes.
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: x=2n where n is an integer
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: x=2n where n is an integer
Step 2
Use the form acsc(bx-c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=1
b=π2
c=0
d=0
Step 3
Since the graph of the function csc does not have a maximum or minimum value, there can be no value for the amplitude.
Amplitude: None
Step 4
Step 4.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 4.2
Replace b with π2 in the formula for period.
2π|π2|
Step 4.3
π2 is approximately 1.57079632 which is positive so remove the absolute value
2ππ2
Step 4.4
Multiply the numerator by the reciprocal of the denominator.
2π2π
Step 4.5
Cancel the common factor of π.
Step 4.5.1
Factor π out of 2π.
π⋅22π
Step 4.5.2
Cancel the common factor.
π⋅22π
Step 4.5.3
Rewrite the expression.
2⋅2
2⋅2
Step 4.6
Multiply 2 by 2.
4
4
Step 5
Step 5.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 5.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: 0π2
Step 5.3
Multiply the numerator by the reciprocal of the denominator.
Phase Shift: 0(2π)
Step 5.4
Multiply 0 by 2π.
Phase Shift: 0
Phase Shift: 0
Step 6
List the properties of the trigonometric function.
Amplitude: None
Period: 4
Phase Shift: None
Vertical Shift: None
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Vertical Asymptotes: x=2n where n is an integer
Amplitude: None
Period: 4
Phase Shift: None
Vertical Shift: None
Step 8