Trigonometry Examples

Find the Exact Value cos(105)
cos(105)cos(105)
Step 1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
-cos(75)cos(75)
Step 2
Split 7575 into two angles where the values of the six trigonometric functions are known.
-cos(30+45)cos(30+45)
Step 3
Apply the sum of angles identity cos(x+y)=cos(x)cos(y)-sin(x)sin(y)cos(x+y)=cos(x)cos(y)sin(x)sin(y).
-(cos(30)cos(45)-sin(30)sin(45))(cos(30)cos(45)sin(30)sin(45))
Step 4
The exact value of cos(30)cos(30) is 3232.
-(32cos(45)-sin(30)sin(45))(32cos(45)sin(30)sin(45))
Step 5
The exact value of cos(45)cos(45) is 2222.
-(3222-sin(30)sin(45))(3222sin(30)sin(45))
Step 6
The exact value of sin(30)sin(30) is 1212.
-(3222-12sin(45))(322212sin(45))
Step 7
The exact value of sin(45)sin(45) is 2222.
-(3222-1222)(32221222)
Step 8
Simplify -(3222-1222)(32221222).
Tap for more steps...
Step 8.1
Simplify each term.
Tap for more steps...
Step 8.1.1
Multiply 32223222.
Tap for more steps...
Step 8.1.1.1
Multiply 3232 by 2222.
-(3222-1222)(32221222)
Step 8.1.1.2
Combine using the product rule for radicals.
-(3222-1222)(32221222)
Step 8.1.1.3
Multiply 33 by 22.
-(622-1222)(6221222)
Step 8.1.1.4
Multiply 22 by 22.
-(64-1222)(641222)
-(64-1222)(641222)
Step 8.1.2
Multiply -12221222.
Tap for more steps...
Step 8.1.2.1
Multiply 2222 by 1212.
-(64-222)(64222)
Step 8.1.2.2
Multiply 22 by 22.
-(64-24)(6424)
-(64-24)(6424)
-(64-24)(6424)
Step 8.2
Combine the numerators over the common denominator.
-6-24624
-6-24624
Step 9
The result can be shown in multiple forms.
Exact Form:
-6-24624
Decimal Form:
-0.258819040.25881904
 [x2  12  π  xdx ]  x2  12  π  xdx