Enter a problem...
Trigonometry Examples
cos(105)cos(105)
Step 1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
-cos(75)−cos(75)
Step 2
Split 7575 into two angles where the values of the six trigonometric functions are known.
-cos(30+45)−cos(30+45)
Step 3
Apply the sum of angles identity cos(x+y)=cos(x)cos(y)-sin(x)sin(y)cos(x+y)=cos(x)cos(y)−sin(x)sin(y).
-(cos(30)cos(45)-sin(30)sin(45))−(cos(30)cos(45)−sin(30)sin(45))
Step 4
The exact value of cos(30)cos(30) is √32√32.
-(√32cos(45)-sin(30)sin(45))−(√32cos(45)−sin(30)sin(45))
Step 5
The exact value of cos(45)cos(45) is √22√22.
-(√32⋅√22-sin(30)sin(45))−(√32⋅√22−sin(30)sin(45))
Step 6
The exact value of sin(30)sin(30) is 1212.
-(√32⋅√22-12sin(45))−(√32⋅√22−12sin(45))
Step 7
The exact value of sin(45)sin(45) is √22√22.
-(√32⋅√22-12⋅√22)−(√32⋅√22−12⋅√22)
Step 8
Step 8.1
Simplify each term.
Step 8.1.1
Multiply √32⋅√22√32⋅√22.
Step 8.1.1.1
Multiply √32√32 by √22√22.
-(√3√22⋅2-12⋅√22)−(√3√22⋅2−12⋅√22)
Step 8.1.1.2
Combine using the product rule for radicals.
-(√3⋅22⋅2-12⋅√22)−(√3⋅22⋅2−12⋅√22)
Step 8.1.1.3
Multiply 33 by 22.
-(√62⋅2-12⋅√22)−(√62⋅2−12⋅√22)
Step 8.1.1.4
Multiply 22 by 22.
-(√64-12⋅√22)−(√64−12⋅√22)
-(√64-12⋅√22)−(√64−12⋅√22)
Step 8.1.2
Multiply -12⋅√22−12⋅√22.
Step 8.1.2.1
Multiply √22√22 by 1212.
-(√64-√22⋅2)−(√64−√22⋅2)
Step 8.1.2.2
Multiply 22 by 22.
-(√64-√24)−(√64−√24)
-(√64-√24)−(√64−√24)
-(√64-√24)−(√64−√24)
Step 8.2
Combine the numerators over the common denominator.
-√6-√24−√6−√24
-√6-√24−√6−√24
Step 9
The result can be shown in multiple forms.
Exact Form:
-√6-√24−√6−√24
Decimal Form:
-0.25881904…−0.25881904…