Enter a problem...
Trigonometry Examples
tan(x)=1√3tan(x)=1√3
Step 1
Step 1.1
Multiply 1√31√3 by √3√3√3√3.
tan(x)=1√3⋅√3√3tan(x)=1√3⋅√3√3
Step 1.2
Combine and simplify the denominator.
Step 1.2.1
Multiply 1√31√3 by √3√3√3√3.
tan(x)=√3√3√3tan(x)=√3√3√3
Step 1.2.2
Raise √3√3 to the power of 11.
tan(x)=√3√31√3tan(x)=√3√31√3
Step 1.2.3
Raise √3√3 to the power of 11.
tan(x)=√3√31√31tan(x)=√3√31√31
Step 1.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
tan(x)=√3√31+1tan(x)=√3√31+1
Step 1.2.5
Add 11 and 11.
tan(x)=√3√32tan(x)=√3√32
Step 1.2.6
Rewrite √32√32 as 33.
Step 1.2.6.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
tan(x)=√3(312)2tan(x)=√3(312)2
Step 1.2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
tan(x)=√3312⋅2tan(x)=√3312⋅2
Step 1.2.6.3
Combine 1212 and 22.
tan(x)=√3322tan(x)=√3322
Step 1.2.6.4
Cancel the common factor of 22.
Step 1.2.6.4.1
Cancel the common factor.
tan(x)=√3322
Step 1.2.6.4.2
Rewrite the expression.
tan(x)=√331
tan(x)=√331
Step 1.2.6.5
Evaluate the exponent.
tan(x)=√33
tan(x)=√33
tan(x)=√33
tan(x)=√33
Step 2
Take the inverse tangent of both sides of the equation to extract x from inside the tangent.
x=arctan(√33)
Step 3
Step 3.1
The exact value of arctan(√33) is π6.
x=π6
x=π6
Step 4
The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from π to find the solution in the fourth quadrant.
x=π+π6
Step 5
Step 5.1
To write π as a fraction with a common denominator, multiply by 66.
x=π⋅66+π6
Step 5.2
Combine fractions.
Step 5.2.1
Combine π and 66.
x=π⋅66+π6
Step 5.2.2
Combine the numerators over the common denominator.
x=π⋅6+π6
x=π⋅6+π6
Step 5.3
Simplify the numerator.
Step 5.3.1
Move 6 to the left of π.
x=6⋅π+π6
Step 5.3.2
Add 6π and π.
x=7π6
x=7π6
x=7π6
Step 6
Step 6.1
The period of the function can be calculated using π|b|.
π|b|
Step 6.2
Replace b with 1 in the formula for period.
π|1|
Step 6.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
π1
Step 6.4
Divide π by 1.
π
π
Step 7
The period of the tan(x) function is π so values will repeat every π radians in both directions.
x=π6+πn,7π6+πn, for any integer n
Step 8
Consolidate the answers.
x=π6+πn, for any integer n