Enter a problem...
Trigonometry Examples
sin(3x)=3sin(x)-4sin3(x)sin(3x)=3sin(x)−4sin3(x)
Step 1
Start on the right side.
3sin(x)-4sin3(x)3sin(x)−4sin3(x)
Step 2
Step 2.1
Factor sin(x)sin(x) out of 3sin(x)3sin(x).
sin(x)⋅3-4sin3(x)sin(x)⋅3−4sin3(x)
Step 2.2
Factor sin(x)sin(x) out of -4sin3(x)−4sin3(x).
sin(x)⋅3+sin(x)(-4sin2(x))sin(x)⋅3+sin(x)(−4sin2(x))
Step 2.3
Factor sin(x)sin(x) out of sin(x)⋅3+sin(x)(-4sin2(x))sin(x)⋅3+sin(x)(−4sin2(x)).
sin(x)(3-4sin2(x))sin(x)(3−4sin2(x))
sin(x)(3-4sin2(x))sin(x)(3−4sin2(x))
Step 3
Apply Pythagorean identity in reverse.
sin(x)(3-4(1-cos2(x)))sin(x)(3−4(1−cos2(x)))
Step 4
Apply the distributive property.
sin(x)(3-4⋅1-4(-cos2(x)))sin(x)(3−4⋅1−4(−cos2(x)))
Step 5
Simplify each term.
sin(x)(3-4+4cos2(x))sin(x)(3−4+4cos2(x))
Step 6
Apply the distributive property.
sin(x)⋅3+sin(x)⋅-4+sin(x)(4cos2(x))sin(x)⋅3+sin(x)⋅−4+sin(x)(4cos2(x))
Step 7
Step 7.1
Simplify each term.
Step 7.1.1
Move 33 to the left of sin(x)sin(x).
3⋅sin(x)+sin(x)⋅-4+sin(x)(4cos(x)2)3⋅sin(x)+sin(x)⋅−4+sin(x)(4cos(x)2)
Step 7.1.2
Move -4−4 to the left of sin(x)sin(x).
3sin(x)-4⋅sin(x)+sin(x)(4cos(x)2)3sin(x)−4⋅sin(x)+sin(x)(4cos(x)2)
Step 7.1.3
Move 44 to the left of sin(x)sin(x).
3sin(x)-4sin(x)+4sin(x)cos(x)23sin(x)−4sin(x)+4sin(x)cos(x)2
3sin(x)-4sin(x)+4sin(x)cos(x)23sin(x)−4sin(x)+4sin(x)cos(x)2
Step 7.2
Subtract 4sin(x)4sin(x) from 3sin(x)3sin(x).
-sin(x)+4sin(x)cos2(x)−sin(x)+4sin(x)cos2(x)
-sin(x)+4sin(x)cos2(x)−sin(x)+4sin(x)cos2(x)
Step 8
Apply Pythagorean identity in reverse.
-sin(x)+4sin(x)(1-sin2(x))−sin(x)+4sin(x)(1−sin2(x))
Step 9
Step 9.1
Rewrite 11 as 1212.
-sin(x)+4sin(x)(12-sin2(x))−sin(x)+4sin(x)(12−sin2(x))
Step 9.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=1a=1 and b=sin(x)b=sin(x).
-sin(x)+4sin(x)((1+sin(x))(1-sin(x)))−sin(x)+4sin(x)((1+sin(x))(1−sin(x)))
Step 9.3
Remove parentheses.
-sin(x)+4sin(x)(1+sin(x))(1-sin(x))−sin(x)+4sin(x)(1+sin(x))(1−sin(x))
Step 9.4
Factor sin(x)sin(x) out of -sin(x)+4sin(x)(1+sin(x))(1-sin(x))−sin(x)+4sin(x)(1+sin(x))(1−sin(x)).
Step 9.4.1
Factor sin(x)sin(x) out of -sin(x)−sin(x).
sin(x)⋅-1+4sin(x)(1+sin(x))(1-sin(x))sin(x)⋅−1+4sin(x)(1+sin(x))(1−sin(x))
Step 9.4.2
Factor sin(x)sin(x) out of 4sin(x)(1+sin(x))(1-sin(x))4sin(x)(1+sin(x))(1−sin(x)).
sin(x)⋅-1+sin(x)((4(1+sin(x)))(1-sin(x)))sin(x)⋅−1+sin(x)((4(1+sin(x)))(1−sin(x)))
Step 9.4.3
Factor sin(x)sin(x) out of sin(x)⋅-1+sin(x)((4(1+sin(x)))(1-sin(x)))sin(x)⋅−1+sin(x)((4(1+sin(x)))(1−sin(x))).
sin(x)(-1+(4(1+sin(x)))(1-sin(x)))sin(x)(−1+(4(1+sin(x)))(1−sin(x)))
sin(x)(-1+(4(1+sin(x)))(1-sin(x)))sin(x)(−1+(4(1+sin(x)))(1−sin(x)))
Step 9.5
Apply the distributive property.
sin(x)(-1+(4⋅1+4sin(x))(1-sin(x)))sin(x)(−1+(4⋅1+4sin(x))(1−sin(x)))
Step 9.6
Multiply 44 by 11.
sin(x)(-1+(4+4sin(x))(1-sin(x)))sin(x)(−1+(4+4sin(x))(1−sin(x)))
Step 9.7
Expand (4+4sin(x))(1-sin(x))(4+4sin(x))(1−sin(x)) using the FOIL Method.
Step 9.7.1
Apply the distributive property.
sin(x)(-1+4(1-sin(x))+4sin(x)(1-sin(x)))sin(x)(−1+4(1−sin(x))+4sin(x)(1−sin(x)))
Step 9.7.2
Apply the distributive property.
sin(x)(-1+4⋅1+4(-sin(x))+4sin(x)(1-sin(x)))sin(x)(−1+4⋅1+4(−sin(x))+4sin(x)(1−sin(x)))
Step 9.7.3
Apply the distributive property.
sin(x)(-1+4⋅1+4(-sin(x))+4sin(x)⋅1+4sin(x)(-sin(x)))sin(x)(−1+4⋅1+4(−sin(x))+4sin(x)⋅1+4sin(x)(−sin(x)))
sin(x)(-1+4⋅1+4(-sin(x))+4sin(x)⋅1+4sin(x)(-sin(x)))sin(x)(−1+4⋅1+4(−sin(x))+4sin(x)⋅1+4sin(x)(−sin(x)))
Step 9.8
Combine the opposite terms in 4⋅1+4(-sin(x))+4sin(x)⋅1+4sin(x)(-sin(x))4⋅1+4(−sin(x))+4sin(x)⋅1+4sin(x)(−sin(x)).
Step 9.8.1
Reorder the factors in the terms 4(-sin(x))4(−sin(x)) and 4sin(x)⋅14sin(x)⋅1.
sin(x)(-1+4⋅1-1⋅4sin(x)+1⋅4sin(x)+4sin(x)(-sin(x)))sin(x)(−1+4⋅1−1⋅4sin(x)+1⋅4sin(x)+4sin(x)(−sin(x)))
Step 9.8.2
Add -1⋅4sin(x)−1⋅4sin(x) and 1⋅4sin(x)1⋅4sin(x).
sin(x)(-1+4⋅1+0+4sin(x)(-sin(x)))sin(x)(−1+4⋅1+0+4sin(x)(−sin(x)))
Step 9.8.3
Add 4⋅14⋅1 and 00.
sin(x)(-1+4⋅1+4sin(x)(-sin(x)))sin(x)(−1+4⋅1+4sin(x)(−sin(x)))
sin(x)(-1+4⋅1+4sin(x)(-sin(x)))sin(x)(−1+4⋅1+4sin(x)(−sin(x)))
Step 9.9
Simplify each term.
Step 9.9.1
Multiply 44 by 11.
sin(x)(-1+4+4sin(x)(-sin(x)))sin(x)(−1+4+4sin(x)(−sin(x)))
Step 9.9.2
Multiply 4sin(x)(-sin(x))4sin(x)(−sin(x)).
Step 9.9.2.1
Multiply -1−1 by 44.
sin(x)(-1+4-4sin(x)sin(x))sin(x)(−1+4−4sin(x)sin(x))
Step 9.9.2.2
Raise sin(x)sin(x) to the power of 11.
sin(x)(-1+4-4(sin1(x)sin(x)))sin(x)(−1+4−4(sin1(x)sin(x)))
Step 9.9.2.3
Raise sin(x)sin(x) to the power of 11.
sin(x)(-1+4-4(sin1(x)sin1(x)))sin(x)(−1+4−4(sin1(x)sin1(x)))
Step 9.9.2.4
Use the power rule aman=am+naman=am+n to combine exponents.
sin(x)(-1+4-4sin(x)1+1)sin(x)(−1+4−4sin(x)1+1)
Step 9.9.2.5
Add 11 and 11.
sin(x)(-1+4-4sin2(x))sin(x)(−1+4−4sin2(x))
sin(x)(-1+4-4sin2(x))sin(x)(−1+4−4sin2(x))
sin(x)(-1+4-4sin2(x))sin(x)(−1+4−4sin2(x))
Step 9.10
Factor 44 out of 44.
sin(x)(-1+4(1)-4sin2(x))sin(x)(−1+4(1)−4sin2(x))
Step 9.11
Factor 44 out of -4sin2(x)−4sin2(x).
sin(x)(-1+4(1)+4(-sin2(x)))sin(x)(−1+4(1)+4(−sin2(x)))
Step 9.12
Factor 44 out of 4(1)+4(-sin2(x))4(1)+4(−sin2(x)).
sin(x)(-1+4(1-sin2(x)))
Step 9.13
Apply pythagorean identity.
sin(x)(-1+4cos2(x))
Step 9.14
Factor.
Step 9.14.1
Rewrite -1+4cos2(x) in a factored form.
Step 9.14.1.1
Rewrite 4cos2(x) as (2cos(x))2.
sin(x)(-1+(2cos(x))2)
Step 9.14.1.2
Rewrite 1 as 12.
sin(x)(-12+(2cos(x))2)
Step 9.14.1.3
Reorder -12 and (2cos(x))2.
sin(x)((2cos(x))2-12)
Step 9.14.1.4
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=2cos(x) and b=1.
sin(x)((2cos(x)+1)(2cos(x)-1))
sin(x)((2cos(x)+1)(2cos(x)-1))
Step 9.14.2
Remove unnecessary parentheses.
sin(x)(2cos(x)+1)(2cos(x)-1)
sin(x)(2cos(x)+1)(2cos(x)-1)
sin(x)(2cos(x)+1)(2cos(x)-1)
Step 10
Apply the distributive property.
(sin(x)(2cos(x))+sin(x)⋅1)(2cos(x)-1)
Step 11
Simplify each term.
(2sin(x)cos(x)+sin(x))(2cos(x)-1)
Step 12
Apply the distributive property.
(2sin(x)cos(x)+sin(x))(2cos(x))+(2sin(x)cos(x)+sin(x))⋅-1
Step 13
Step 13.1
Simplify each term.
Step 13.1.1
Apply the distributive property.
2sin(x)cos(x)(2cos(x))+sin(x)(2cos(x))+(2sin(x)cos(x)+sin(x))⋅-1
Step 13.1.2
Multiply 2sin(x)cos(x)(2cos(x)).
Step 13.1.2.1
Multiply 2 by 2.
4sin(x)cos(x)cos(x)+sin(x)(2cos(x))+(2sin(x)cos(x)+sin(x))⋅-1
Step 13.1.2.2
Raise cos(x) to the power of 1.
4sin(x)(cos(x)1cos(x))+sin(x)(2cos(x))+(2sin(x)cos(x)+sin(x))⋅-1
Step 13.1.2.3
Raise cos(x) to the power of 1.
4sin(x)(cos(x)1cos(x)1)+sin(x)(2cos(x))+(2sin(x)cos(x)+sin(x))⋅-1
Step 13.1.2.4
Use the power rule aman=am+n to combine exponents.
4sin(x)cos(x)1+1+sin(x)(2cos(x))+(2sin(x)cos(x)+sin(x))⋅-1
Step 13.1.2.5
Add 1 and 1.
4sin(x)cos(x)2+sin(x)(2cos(x))+(2sin(x)cos(x)+sin(x))⋅-1
4sin(x)cos(x)2+sin(x)(2cos(x))+(2sin(x)cos(x)+sin(x))⋅-1
Step 13.1.3
Move 2 to the left of sin(x).
4sin(x)cos(x)2+2sin(x)cos(x)+(2sin(x)cos(x)+sin(x))⋅-1
Step 13.1.4
Apply the distributive property.
4sin(x)cos(x)2+2sin(x)cos(x)+2sin(x)cos(x)⋅-1+sin(x)⋅-1
Step 13.1.5
Multiply -1 by 2.
4sin(x)cos(x)2+2sin(x)cos(x)-2sin(x)cos(x)+sin(x)⋅-1
Step 13.1.6
Move -1 to the left of sin(x).
4sin(x)cos(x)2+2sin(x)cos(x)-2sin(x)cos(x)-1⋅sin(x)
Step 13.1.7
Rewrite -1sin(x) as -sin(x).
4sin(x)cos(x)2+2sin(x)cos(x)-2sin(x)cos(x)-sin(x)
4sin(x)cos(x)2+2sin(x)cos(x)-2sin(x)cos(x)-sin(x)
Step 13.2
Subtract 2sin(x)cos(x) from 2sin(x)cos(x).
4sin(x)cos(x)2+0-sin(x)
Step 13.3
Add 4sin(x)cos(x)2 and 0.
4sin(x)cos2(x)-sin(x)
4sin(x)cos2(x)-sin(x)
Step 14
Apply Pythagorean identity in reverse.
4sin(x)(1-sin2(x))-sin(x)
Step 15
Step 15.1
Simplify each term.
Step 15.1.1
Apply the distributive property.
4sin(x)⋅1+4sin(x)(-sin(x)2)-sin(x)
Step 15.1.2
Multiply 4 by 1.
4sin(x)+4sin(x)(-sin(x)2)-sin(x)
Step 15.1.3
Multiply sin(x) by sin(x)2 by adding the exponents.
Step 15.1.3.1
Move sin(x)2.
4sin(x)+4(sin(x)2sin(x))⋅-1-sin(x)
Step 15.1.3.2
Multiply sin(x)2 by sin(x).
Step 15.1.3.2.1
Raise sin(x) to the power of 1.
4sin(x)+4(sin(x)2sin(x)1)⋅-1-sin(x)
Step 15.1.3.2.2
Use the power rule aman=am+n to combine exponents.
4sin(x)+4sin(x)2+1⋅-1-sin(x)
4sin(x)+4sin(x)2+1⋅-1-sin(x)
Step 15.1.3.3
Add 2 and 1.
4sin(x)+4sin(x)3⋅-1-sin(x)
4sin(x)+4sin(x)3⋅-1-sin(x)
Step 15.1.4
Multiply -1 by 4.
4sin(x)-4sin(x)3-sin(x)
4sin(x)-4sin(x)3-sin(x)
Step 15.2
Subtract sin(x) from 4sin(x).
-4sin3(x)+3sin(x)
-4sin3(x)+3sin(x)
Step 16
Apply the sine triple-angle identity.
sin(3x)
Step 17
Because the two sides have been shown to be equivalent, the equation is an identity.
sin(3x)=3sin(x)-4sin3(x) is an identity