Trigonometry Examples

Find Amplitude, Period, and Phase Shift y=sin(pi+6x)
y=sin(π+6x)
Step 1
Use the form asin(bx-c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=1
b=6
c=-π
d=0
Step 2
Find the amplitude |a|.
Amplitude: 1
Step 3
Find the period of sin(π+6x).
Tap for more steps...
Step 3.1
The period of the function can be calculated using 2π|b|.
2π|b|
Step 3.2
Replace b with 6 in the formula for period.
2π|6|
Step 3.3
The absolute value is the distance between a number and zero. The distance between 0 and 6 is 6.
2π6
Step 3.4
Cancel the common factor of 2 and 6.
Tap for more steps...
Step 3.4.1
Factor 2 out of 2π.
2(π)6
Step 3.4.2
Cancel the common factors.
Tap for more steps...
Step 3.4.2.1
Factor 2 out of 6.
2π23
Step 3.4.2.2
Cancel the common factor.
2π23
Step 3.4.2.3
Rewrite the expression.
π3
π3
π3
π3
Step 4
Find the phase shift using the formula cb.
Tap for more steps...
Step 4.1
The phase shift of the function can be calculated from cb.
Phase Shift: cb
Step 4.2
Replace the values of c and b in the equation for phase shift.
Phase Shift: -π6
Step 4.3
Move the negative in front of the fraction.
Phase Shift: -π6
Phase Shift: -π6
Step 5
List the properties of the trigonometric function.
Amplitude: 1
Period: π3
Phase Shift: -π6 (π6 to the left)
Vertical Shift: None
Step 6
 [x2  12  π  xdx ]