Enter a problem...
Trigonometry Examples
(0,-2)
Step 1
Convert from rectangular coordinates (x,y) to polar coordinates (r,θ) using the conversion formulas.
r=√x2+y2
θ=tan-1(yx)
Step 2
Replace x and y with the actual values.
r=√(0)2+(-2)2
θ=tan-1(yx)
Step 3
Step 3.1
Raising 0 to any positive power yields 0.
r=√0+(-2)2
θ=tan-1(yx)
Step 3.2
Raise -2 to the power of 2.
r=√0+4
θ=tan-1(yx)
Step 3.3
Add 0 and 4.
r=√4
θ=tan-1(yx)
Step 3.4
Rewrite 4 as 22.
r=√22
θ=tan-1(yx)
Step 3.5
Pull terms out from under the radical, assuming positive real numbers.
r=2
θ=tan-1(yx)
r=2
θ=tan-1(yx)
Step 4
Replace x and y with the actual values.
r=2
θ=tan-1(-20)
Step 5
The inverse tangent of Undefined is θ=270°.
r=2
θ=270°
Step 6
This is the result of the conversion to polar coordinates in (r,θ) form.
(2,270°)