Trigonometry Examples

Convert to Rectangular Coordinates (3,(2pi)/3)
(3,2π3)
Step 1
Use the conversion formulas to convert from polar coordinates to rectangular coordinates.
x=rcosθ
y=rsinθ
Step 2
Substitute in the known values of r=3 and θ=2π3 into the formulas.
x=(3)cos(2π3)
y=(3)sin(2π3)
Step 3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
x=3(-cos(π3))
y=(3)sin(2π3)
Step 4
The exact value of cos(π3) is 12.
x=3(-12)
y=(3)sin(2π3)
Step 5
Multiply 3(-12).
Tap for more steps...
Step 5.1
Multiply -1 by 3.
x=-3(12)
y=(3)sin(2π3)
Step 5.2
Combine -3 and 12.
x=-32
y=(3)sin(2π3)
x=-32
y=(3)sin(2π3)
Step 6
Move the negative in front of the fraction.
x=-32
y=(3)sin(2π3)
Step 7
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
x=-32
y=3sin(π3)
Step 8
The exact value of sin(π3) is 32.
x=-32
y=3(32)
Step 9
Combine 3 and 32.
x=-32
y=332
Step 10
The rectangular representation of the polar point (3,2π3) is (-32,332).
(-32,332)
 [x2  12  π  xdx ]