Trigonometry Examples

Expand Using De Moivre's Theorem sin(2x)
sin(2x)
Step 1
A good method to expand sin(2x) is by using De Moivre's theorem (r(cos(x)+isin(x))n=rn(cos(nx)+isin(nx))). When r=1, cos(nx)+isin(nx)=(cos(x)+isin(x))n.
cos(nx)+isin(nx)=(cos(x)+isin(x))n
Step 2
Expand the right hand side of cos(nx)+isin(nx)=(cos(x)+isin(x))n using the binomial theorem.
Expand: (cos(x)+isin(x))2
Step 3
Rewrite (cos(x)+isin(x))2 as (cos(x)+isin(x))(cos(x)+isin(x)).
(cos(x)+isin(x))(cos(x)+isin(x))
Step 4
Expand (cos(x)+isin(x))(cos(x)+isin(x)) using the FOIL Method.
Tap for more steps...
Step 4.1
Apply the distributive property.
cos(x)(cos(x)+isin(x))+isin(x)(cos(x)+isin(x))
Step 4.2
Apply the distributive property.
cos(x)cos(x)+cos(x)(isin(x))+isin(x)(cos(x)+isin(x))
Step 4.3
Apply the distributive property.
cos(x)cos(x)+cos(x)(isin(x))+isin(x)cos(x)+isin(x)(isin(x))
cos(x)cos(x)+cos(x)(isin(x))+isin(x)cos(x)+isin(x)(isin(x))
Step 5
Simplify and combine like terms.
Tap for more steps...
Step 5.1
Simplify each term.
Tap for more steps...
Step 5.1.1
Multiply cos(x)cos(x).
Tap for more steps...
Step 5.1.1.1
Raise cos(x) to the power of 1.
cos1(x)cos(x)+cos(x)(isin(x))+isin(x)cos(x)+isin(x)(isin(x))
Step 5.1.1.2
Raise cos(x) to the power of 1.
cos1(x)cos1(x)+cos(x)(isin(x))+isin(x)cos(x)+isin(x)(isin(x))
Step 5.1.1.3
Use the power rule aman=am+n to combine exponents.
cos(x)1+1+cos(x)(isin(x))+isin(x)cos(x)+isin(x)(isin(x))
Step 5.1.1.4
Add 1 and 1.
cos2(x)+cos(x)(isin(x))+isin(x)cos(x)+isin(x)(isin(x))
cos2(x)+cos(x)(isin(x))+isin(x)cos(x)+isin(x)(isin(x))
Step 5.1.2
Rewrite using the commutative property of multiplication.
cos2(x)+icos(x)sin(x)+isin(x)cos(x)+isin(x)(isin(x))
Step 5.1.3
Multiply isin(x)(isin(x)).
Tap for more steps...
Step 5.1.3.1
Raise i to the power of 1.
cos2(x)+icos(x)sin(x)+isin(x)cos(x)+i1isin(x)sin(x)
Step 5.1.3.2
Raise i to the power of 1.
cos2(x)+icos(x)sin(x)+isin(x)cos(x)+i1i1sin(x)sin(x)
Step 5.1.3.3
Use the power rule aman=am+n to combine exponents.
cos2(x)+icos(x)sin(x)+isin(x)cos(x)+i1+1sin(x)sin(x)
Step 5.1.3.4
Add 1 and 1.
cos2(x)+icos(x)sin(x)+isin(x)cos(x)+i2sin(x)sin(x)
Step 5.1.3.5
Raise sin(x) to the power of 1.
cos2(x)+icos(x)sin(x)+isin(x)cos(x)+i2(sin1(x)sin(x))
Step 5.1.3.6
Raise sin(x) to the power of 1.
cos2(x)+icos(x)sin(x)+isin(x)cos(x)+i2(sin1(x)sin1(x))
Step 5.1.3.7
Use the power rule aman=am+n to combine exponents.
cos2(x)+icos(x)sin(x)+isin(x)cos(x)+i2sin(x)1+1
Step 5.1.3.8
Add 1 and 1.
cos2(x)+icos(x)sin(x)+isin(x)cos(x)+i2sin2(x)
cos2(x)+icos(x)sin(x)+isin(x)cos(x)+i2sin2(x)
Step 5.1.4
Rewrite i2 as -1.
cos2(x)+icos(x)sin(x)+isin(x)cos(x)-1sin2(x)
Step 5.1.5
Rewrite -1sin2(x) as -sin2(x).
cos2(x)+icos(x)sin(x)+isin(x)cos(x)-sin2(x)
cos2(x)+icos(x)sin(x)+isin(x)cos(x)-sin2(x)
Step 5.2
Reorder the factors of isin(x)cos(x).
cos2(x)+icos(x)sin(x)+icos(x)sin(x)-sin2(x)
Step 5.3
Add icos(x)sin(x) and icos(x)sin(x).
cos2(x)+2icos(x)sin(x)-sin2(x)
cos2(x)+2icos(x)sin(x)-sin2(x)
Step 6
Move -sin2(x).
cos2(x)-sin2(x)+2icos(x)sin(x)
Step 7
Apply the cosine double-angle identity.
cos(2x)+2icos(x)sin(x)
Step 8
Simplify each term.
Tap for more steps...
Step 8.1
Add parentheses.
cos(2x)+2i(cos(x)sin(x))
Step 8.2
Reorder 2i and cos(x)sin(x).
cos(2x)+cos(x)sin(x)(2i)
Step 8.3
Add parentheses.
cos(2x)+cos(x)(sin(x)2)i
Step 8.4
Reorder cos(x) and sin(x)2.
cos(2x)+sin(x)2cos(x)i
Step 8.5
Reorder sin(x) and 2.
cos(2x)+2sin(x)cos(x)i
Step 8.6
Apply the sine double-angle identity.
cos(2x)+sin(2x)i
cos(2x)+sin(2x)i
Step 9
Reorder factors in cos(2x)+sin(2x)i.
cos(2x)+isin(2x)
Step 10
Take out the expressions with the imaginary part, which are equal to sin(2x). Remove the imaginary number i.
sin(2x)=2sin(x)cos(x)
 [x2  12  π  xdx ]