Enter a problem...
Trigonometry Examples
1-√3i1−√3i
Step 1
This is the trigonometric form of a complex number where |z||z| is the modulus and θθ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))z=a+bi=|z|(cos(θ)+isin(θ))
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=√a2+b2|z|=√a2+b2 where z=a+biz=a+bi
Step 3
Substitute the actual values of a=1a=1 and b=-1√3b=−1√3.
|z|=√(-1√3)2+12|z|=√(−1√3)2+12
Step 4
Step 4.1
Simplify the expression.
Step 4.1.1
Rewrite -1√3−1√3 as -√3−√3.
|z|=√(-√3)2+12|z|=√(−√3)2+12
Step 4.1.2
Apply the product rule to -√3−√3.
|z|=√(-1)2√32+12|z|=√(−1)2√32+12
Step 4.1.3
Raise -1−1 to the power of 22.
|z|=√1√32+12|z|=√1√32+12
Step 4.1.4
Multiply √32√32 by 11.
|z|=√√32+12|z|=√√32+12
|z|=√√32+12|z|=√√32+12
Step 4.2
Rewrite √32√32 as 33.
Step 4.2.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
|z|=√(312)2+12|z|=√(312)2+12
Step 4.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
|z|=√312⋅2+12|z|=√312⋅2+12
Step 4.2.3
Combine 1212 and 22.
|z|=√322+12|z|=√322+12
Step 4.2.4
Cancel the common factor of 22.
Step 4.2.4.1
Cancel the common factor.
|z|=√322+12
Step 4.2.4.2
Rewrite the expression.
|z|=√3+12
|z|=√3+12
Step 4.2.5
Evaluate the exponent.
|z|=√3+12
|z|=√3+12
Step 4.3
Simplify the expression.
Step 4.3.1
One to any power is one.
|z|=√3+1
Step 4.3.2
Add 3 and 1.
|z|=√4
Step 4.3.3
Rewrite 4 as 22.
|z|=√22
|z|=√22
Step 4.4
Pull terms out from under the radical, assuming positive real numbers.
|z|=2
|z|=2
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(-1√31)
Step 6
Since inverse tangent of -1√31 produces an angle in the fourth quadrant, the value of the angle is -π3.
θ=-π3
Step 7
Substitute the values of θ=-π3 and |z|=2.
2(cos(-π3)+isin(-π3))