Trigonometry Examples

Convert to Trigonometric Form 1- square root of 3i
1-3i13i
Step 1
This is the trigonometric form of a complex number where |z||z| is the modulus and θθ is the angle created on the complex plane.
z=a+bi=|z|(cos(θ)+isin(θ))z=a+bi=|z|(cos(θ)+isin(θ))
Step 2
The modulus of a complex number is the distance from the origin on the complex plane.
|z|=a2+b2|z|=a2+b2 where z=a+biz=a+bi
Step 3
Substitute the actual values of a=1a=1 and b=-13b=13.
|z|=(-13)2+12|z|=(13)2+12
Step 4
Find |z||z|.
Tap for more steps...
Step 4.1
Simplify the expression.
Tap for more steps...
Step 4.1.1
Rewrite -1313 as -33.
|z|=(-3)2+12|z|=(3)2+12
Step 4.1.2
Apply the product rule to -33.
|z|=(-1)232+12|z|=(1)232+12
Step 4.1.3
Raise -11 to the power of 22.
|z|=132+12|z|=132+12
Step 4.1.4
Multiply 3232 by 11.
|z|=32+12|z|=32+12
|z|=32+12|z|=32+12
Step 4.2
Rewrite 3232 as 33.
Tap for more steps...
Step 4.2.1
Use nax=axnnax=axn to rewrite 33 as 312312.
|z|=(312)2+12|z|=(312)2+12
Step 4.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
|z|=3122+12|z|=3122+12
Step 4.2.3
Combine 1212 and 22.
|z|=322+12|z|=322+12
Step 4.2.4
Cancel the common factor of 22.
Tap for more steps...
Step 4.2.4.1
Cancel the common factor.
|z|=322+12
Step 4.2.4.2
Rewrite the expression.
|z|=3+12
|z|=3+12
Step 4.2.5
Evaluate the exponent.
|z|=3+12
|z|=3+12
Step 4.3
Simplify the expression.
Tap for more steps...
Step 4.3.1
One to any power is one.
|z|=3+1
Step 4.3.2
Add 3 and 1.
|z|=4
Step 4.3.3
Rewrite 4 as 22.
|z|=22
|z|=22
Step 4.4
Pull terms out from under the radical, assuming positive real numbers.
|z|=2
|z|=2
Step 5
The angle of the point on the complex plane is the inverse tangent of the complex portion over the real portion.
θ=arctan(-131)
Step 6
Since inverse tangent of -131 produces an angle in the fourth quadrant, the value of the angle is -π3.
θ=-π3
Step 7
Substitute the values of θ=-π3 and |z|=2.
2(cos(-π3)+isin(-π3))
 [x2  12  π  xdx ]