Trigonometry Examples

Convert to Polar Coordinates (4,-4)
(4,-4)(4,4)
Step 1
Convert from rectangular coordinates (x,y)(x,y) to polar coordinates (r,θ)(r,θ) using the conversion formulas.
r=x2+y2r=x2+y2
θ=tan-1(yx)θ=tan1(yx)
Step 2
Replace xx and yy with the actual values.
r=(4)2+(-4)2r=(4)2+(4)2
θ=tan-1(yx)θ=tan1(yx)
Step 3
Find the magnitude of the polar coordinate.
Tap for more steps...
Step 3.1
Raise 44 to the power of 22.
r=16+(-4)2r=16+(4)2
θ=tan-1(yx)θ=tan1(yx)
Step 3.2
Raise -44 to the power of 22.
r=16+16r=16+16
θ=tan-1(yx)θ=tan1(yx)
Step 3.3
Add 1616 and 1616.
r=32r=32
θ=tan-1(yx)θ=tan1(yx)
Step 3.4
Rewrite 3232 as 422422.
Tap for more steps...
Step 3.4.1
Factor 1616 out of 3232.
r=16(2)r=16(2)
θ=tan-1(yx)θ=tan1(yx)
Step 3.4.2
Rewrite 1616 as 4242.
r=422r=422
θ=tan-1(yx)θ=tan1(yx)
r=422r=422
θ=tan-1(yx)θ=tan1(yx)
Step 3.5
Pull terms out from under the radical.
r=42r=42
θ=tan-1(yx)θ=tan1(yx)
r=42r=42
θ=tan-1(yx)θ=tan1(yx)
Step 4
Replace xx and yy with the actual values.
r=42r=42
θ=tan-1(-44)θ=tan1(44)
Step 5
The inverse tangent of -11 is θ=315°θ=315°.
r=42r=42
θ=315°θ=315°
Step 6
This is the result of the conversion to polar coordinates in (r,θ)(r,θ) form.
(42,315°)(42,315°)
 [x2  12  π  xdx ]  x2  12  π  xdx