Enter a problem...
Trigonometry Examples
(4,-4)(4,−4)
Step 1
Convert from rectangular coordinates (x,y)(x,y) to polar coordinates (r,θ)(r,θ) using the conversion formulas.
r=√x2+y2r=√x2+y2
θ=tan-1(yx)θ=tan−1(yx)
Step 2
Replace xx and yy with the actual values.
r=√(4)2+(-4)2r=√(4)2+(−4)2
θ=tan-1(yx)θ=tan−1(yx)
Step 3
Step 3.1
Raise 44 to the power of 22.
r=√16+(-4)2r=√16+(−4)2
θ=tan-1(yx)θ=tan−1(yx)
Step 3.2
Raise -4−4 to the power of 22.
r=√16+16r=√16+16
θ=tan-1(yx)θ=tan−1(yx)
Step 3.3
Add 1616 and 1616.
r=√32r=√32
θ=tan-1(yx)θ=tan−1(yx)
Step 3.4
Rewrite 3232 as 42⋅242⋅2.
Step 3.4.1
Factor 1616 out of 3232.
r=√16(2)r=√16(2)
θ=tan-1(yx)θ=tan−1(yx)
Step 3.4.2
Rewrite 1616 as 4242.
r=√42⋅2r=√42⋅2
θ=tan-1(yx)θ=tan−1(yx)
r=√42⋅2r=√42⋅2
θ=tan-1(yx)θ=tan−1(yx)
Step 3.5
Pull terms out from under the radical.
r=4√2r=4√2
θ=tan-1(yx)θ=tan−1(yx)
r=4√2r=4√2
θ=tan-1(yx)θ=tan−1(yx)
Step 4
Replace xx and yy with the actual values.
r=4√2r=4√2
θ=tan-1(-44)θ=tan−1(−44)
Step 5
The inverse tangent of -1−1 is θ=315°θ=315°.
r=4√2r=4√2
θ=315°θ=315°
Step 6
This is the result of the conversion to polar coordinates in (r,θ)(r,θ) form.
(4√2,315°)(4√2,315°)