Enter a problem...
Trigonometry Examples
tan(15)tan(15)
Step 1
Split 1515 into two angles where the values of the six trigonometric functions are known.
tan(45-30)tan(45−30)
Step 2
Separate negation.
tan(45-(30))tan(45−(30))
Step 3
Apply the difference of angles identity.
tan(45)-tan(30)1+tan(45)tan(30)tan(45)−tan(30)1+tan(45)tan(30)
Step 4
The exact value of tan(45)tan(45) is 11.
1-tan(30)1+tan(45)tan(30)1−tan(30)1+tan(45)tan(30)
Step 5
The exact value of tan(30)tan(30) is √33√33.
1-√331+tan(45)tan(30)1−√331+tan(45)tan(30)
Step 6
The exact value of tan(45)tan(45) is 11.
1-√331+1tan(30)1−√331+1tan(30)
Step 7
The exact value of tan(30)tan(30) is √33√33.
1-√331+1√331−√331+1√33
Step 8
Step 8.1
Multiply the numerator and denominator of the fraction by 33.
Step 8.1.1
Multiply 1-√331+1√331−√331+1√33 by 3333.
33⋅1-√331+1√3333⋅1−√331+1√33
Step 8.1.2
Combine.
3(1-√33)3(1+1√33)3(1−√33)3(1+1√33)
3(1-√33)3(1+1√33)3(1−√33)3(1+1√33)
Step 8.2
Apply the distributive property.
3⋅1+3(-√33)3⋅1+3(1√33)3⋅1+3(−√33)3⋅1+3(1√33)
Step 8.3
Cancel the common factor of 33.
Step 8.3.1
Move the leading negative in -√33−√33 into the numerator.
3⋅1+3-√333⋅1+3(1√33)3⋅1+3−√333⋅1+3(1√33)
Step 8.3.2
Cancel the common factor.
3⋅1+3-√333⋅1+3(1√33)
Step 8.3.3
Rewrite the expression.
3⋅1-√33⋅1+3(1√33)
3⋅1-√33⋅1+3(1√33)
Step 8.4
Multiply 3 by 1.
3-√33⋅1+3⋅1√33
Step 8.5
Simplify the denominator.
Step 8.5.1
Multiply 3 by 1.
3-√33+3⋅1√33
Step 8.5.2
Cancel the common factor of 3.
Step 8.5.2.1
Factor 3 out of 3⋅1.
3-√33+3(1)√33
Step 8.5.2.2
Cancel the common factor.
3-√33+3⋅1√33
Step 8.5.2.3
Rewrite the expression.
3-√33+√3
3-√33+√3
3-√33+√3
Step 8.6
Multiply 3-√33+√3 by 3-√33-√3.
3-√33+√3⋅3-√33-√3
Step 8.7
Multiply 3-√33+√3 by 3-√33-√3.
(3-√3)(3-√3)(3+√3)(3-√3)
Step 8.8
Expand the denominator using the FOIL method.
(3-√3)(3-√3)9-3√3+√3⋅3-√32
Step 8.9
Simplify.
(3-√3)(3-√3)6
Step 8.10
Simplify the numerator.
Step 8.10.1
Raise 3-√3 to the power of 1.
(3-√3)1(3-√3)6
Step 8.10.2
Raise 3-√3 to the power of 1.
(3-√3)1(3-√3)16
Step 8.10.3
Use the power rule aman=am+n to combine exponents.
(3-√3)1+16
Step 8.10.4
Add 1 and 1.
(3-√3)26
(3-√3)26
Step 8.11
Rewrite (3-√3)2 as (3-√3)(3-√3).
(3-√3)(3-√3)6
Step 8.12
Expand (3-√3)(3-√3) using the FOIL Method.
Step 8.12.1
Apply the distributive property.
3(3-√3)-√3(3-√3)6
Step 8.12.2
Apply the distributive property.
3⋅3+3(-√3)-√3(3-√3)6
Step 8.12.3
Apply the distributive property.
3⋅3+3(-√3)-√3⋅3-√3(-√3)6
3⋅3+3(-√3)-√3⋅3-√3(-√3)6
Step 8.13
Simplify and combine like terms.
Step 8.13.1
Simplify each term.
Step 8.13.1.1
Multiply 3 by 3.
9+3(-√3)-√3⋅3-√3(-√3)6
Step 8.13.1.2
Multiply -1 by 3.
9-3√3-√3⋅3-√3(-√3)6
Step 8.13.1.3
Multiply 3 by -1.
9-3√3-3√3-√3(-√3)6
Step 8.13.1.4
Multiply -√3(-√3).
Step 8.13.1.4.1
Multiply -1 by -1.
9-3√3-3√3+1√3√36
Step 8.13.1.4.2
Multiply √3 by 1.
9-3√3-3√3+√3√36
Step 8.13.1.4.3
Raise √3 to the power of 1.
9-3√3-3√3+√31√36
Step 8.13.1.4.4
Raise √3 to the power of 1.
9-3√3-3√3+√31√316
Step 8.13.1.4.5
Use the power rule aman=am+n to combine exponents.
9-3√3-3√3+√31+16
Step 8.13.1.4.6
Add 1 and 1.
9-3√3-3√3+√326
9-3√3-3√3+√326
Step 8.13.1.5
Rewrite √32 as 3.
Step 8.13.1.5.1
Use n√ax=axn to rewrite √3 as 312.
9-3√3-3√3+(312)26
Step 8.13.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
9-3√3-3√3+312⋅26
Step 8.13.1.5.3
Combine 12 and 2.
9-3√3-3√3+3226
Step 8.13.1.5.4
Cancel the common factor of 2.
Step 8.13.1.5.4.1
Cancel the common factor.
9-3√3-3√3+3226
Step 8.13.1.5.4.2
Rewrite the expression.
9-3√3-3√3+316
9-3√3-3√3+316
Step 8.13.1.5.5
Evaluate the exponent.
9-3√3-3√3+36
9-3√3-3√3+36
9-3√3-3√3+36
Step 8.13.2
Add 9 and 3.
12-3√3-3√36
Step 8.13.3
Subtract 3√3 from -3√3.
12-6√36
12-6√36
Step 8.14
Cancel the common factor of 12-6√3 and 6.
Step 8.14.1
Factor 6 out of 12.
6⋅2-6√36
Step 8.14.2
Factor 6 out of -6√3.
6⋅2+6(-√3)6
Step 8.14.3
Factor 6 out of 6(2)+6(-√3).
6(2-√3)6
Step 8.14.4
Cancel the common factors.
Step 8.14.4.1
Factor 6 out of 6.
6(2-√3)6(1)
Step 8.14.4.2
Cancel the common factor.
6(2-√3)6⋅1
Step 8.14.4.3
Rewrite the expression.
2-√31
Step 8.14.4.4
Divide 2-√3 by 1.
2-√3
2-√3
2-√3
2-√3
Step 9
The result can be shown in multiple forms.
Exact Form:
2-√3
Decimal Form:
0.26794919…