Trigonometry Examples

Expand Using Sum/Difference Formulas cos(165)
cos(165)
Step 1
First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, 165 can be split into 120+45.
cos(120+45)
Step 2
Use the sum formula for cosine to simplify the expression. The formula states that cos(A+B)=-(cos(A)cos(B)+sin(A)sin(B)).
cos(45)cos(120)-sin(45)sin(120)
Step 3
Remove parentheses.
cos(45)cos(120)-sin(45)sin(120)
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
The exact value of cos(45) is 22.
22cos(120)-sin(45)sin(120)
Step 4.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
22(-cos(60))-sin(45)sin(120)
Step 4.3
The exact value of cos(60) is 12.
22(-12)-sin(45)sin(120)
Step 4.4
Multiply 22(-12).
Tap for more steps...
Step 4.4.1
Multiply 22 by 12.
-222-sin(45)sin(120)
Step 4.4.2
Multiply 2 by 2.
-24-sin(45)sin(120)
-24-sin(45)sin(120)
Step 4.5
The exact value of sin(45) is 22.
-24-22sin(120)
Step 4.6
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
-24-22sin(60)
Step 4.7
The exact value of sin(60) is 32.
-24-2232
Step 4.8
Multiply -2232.
Tap for more steps...
Step 4.8.1
Multiply 32 by 22.
-24-3222
Step 4.8.2
Combine using the product rule for radicals.
-24-3222
Step 4.8.3
Multiply 3 by 2.
-24-622
Step 4.8.4
Multiply 2 by 2.
-24-64
-24-64
-24-64
Step 5
Simplify.
Tap for more steps...
Step 5.1
Combine the numerators over the common denominator.
-2-64
Step 5.2
Factor -1 out of -2.
-(2)-64
Step 5.3
Factor -1 out of -6.
-(2)-(6)4
Step 5.4
Factor -1 out of -(2)-(6).
-(2+6)4
Step 5.5
Simplify the expression.
Tap for more steps...
Step 5.5.1
Rewrite -(2+6) as -1(2+6).
-1(2+6)4
Step 5.5.2
Move the negative in front of the fraction.
-2+64
-2+64
-2+64
Step 6
The result can be shown in multiple forms.
Exact Form:
-2+64
Decimal Form:
-0.96592582
 [x2  12  π  xdx ]