Enter a problem...
Trigonometry Examples
-330°−330°
Step 1
To convert degrees to radians, multiply by π180°π180°, since a full circle is 360°360° or 2π2π radians.
-330°⋅π180°−330°⋅π180° radians
Step 2
Step 2.1
Factor 3030 out of -330−330.
30(-11)⋅π18030(−11)⋅π180 radians
Step 2.2
Factor 3030 out of 180180.
30⋅-11⋅π30⋅630⋅−11⋅π30⋅6 radians
Step 2.3
Cancel the common factor.
30⋅-11⋅π30⋅6 radians
Step 2.4
Rewrite the expression.
-11⋅π6 radians
-11⋅π6 radians
Step 3
Combine -11 and π6.
-11π6 radians
Step 4
Move the negative in front of the fraction.
-11π6 radians