Enter a problem...
Trigonometry Examples
y=sin(x)-2y=sin(x)−2
Step 1
Use the form asin(bx-c)+dasin(bx−c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=1a=1
b=1b=1
c=0c=0
d=-2d=−2
Step 2
Find the amplitude |a||a|.
Amplitude: 11
Step 3
Step 3.1
Find the period of sin(x)sin(x).
Step 3.1.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.1.2
Replace bb with 11 in the formula for period.
2π|1|2π|1|
Step 3.1.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
2π12π1
Step 3.1.4
Divide 2π2π by 11.
2π2π
2π2π
Step 3.2
Find the period of -2−2.
Step 3.2.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.2.2
Replace bb with 11 in the formula for period.
2π|1|2π|1|
Step 3.2.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
2π12π1
Step 3.2.4
Divide 2π2π by 11.
2π2π
2π2π
Step 3.3
The period of addition/subtraction of trig functions is the maximum of the individual periods.
2π2π
2π2π
Step 4
Step 4.1
The phase shift of the function can be calculated from cbcb.
Phase Shift: cbcb
Step 4.2
Replace the values of cc and bb in the equation for phase shift.
Phase Shift: 0101
Step 4.3
Divide 00 by 11.
Phase Shift: 00
Phase Shift: 00
Step 5
List the properties of the trigonometric function.
Amplitude: 11
Period: 2π2π
Phase Shift: None
Vertical Shift: -2−2
Step 6
Step 6.1
Find the point at x=0x=0.
Step 6.1.1
Replace the variable xx with 00 in the expression.
f(0)=sin(0)-2f(0)=sin(0)−2
Step 6.1.2
Simplify the result.
Step 6.1.2.1
The exact value of sin(0)sin(0) is 00.
f(0)=0-2f(0)=0−2
Step 6.1.2.2
Subtract 22 from 00.
f(0)=-2f(0)=−2
Step 6.1.2.3
The final answer is -2−2.
-2−2
-2−2
-2−2
Step 6.2
Find the point at x=π2x=π2.
Step 6.2.1
Replace the variable xx with π2π2 in the expression.
f(π2)=sin(π2)-2f(π2)=sin(π2)−2
Step 6.2.2
Simplify the result.
Step 6.2.2.1
The exact value of sin(π2)sin(π2) is 11.
f(π2)=1-2f(π2)=1−2
Step 6.2.2.2
Subtract 22 from 11.
f(π2)=-1f(π2)=−1
Step 6.2.2.3
The final answer is -1−1.
-1−1
-1−1
-1−1
Step 6.3
Find the point at x=πx=π.
Step 6.3.1
Replace the variable xx with ππ in the expression.
f(π)=sin(π)-2f(π)=sin(π)−2
Step 6.3.2
Simplify the result.
Step 6.3.2.1
Simplify each term.
Step 6.3.2.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
f(π)=sin(0)-2f(π)=sin(0)−2
Step 6.3.2.1.2
The exact value of sin(0)sin(0) is 00.
f(π)=0-2f(π)=0−2
f(π)=0-2f(π)=0−2
Step 6.3.2.2
Subtract 22 from 00.
f(π)=-2f(π)=−2
Step 6.3.2.3
The final answer is -2−2.
-2−2
-2−2
-2−2
Step 6.4
Find the point at x=3π2x=3π2.
Step 6.4.1
Replace the variable xx with 3π23π2 in the expression.
f(3π2)=sin(3π2)-2f(3π2)=sin(3π2)−2
Step 6.4.2
Simplify the result.
Step 6.4.2.1
Simplify each term.
Step 6.4.2.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because sine is negative in the fourth quadrant.
f(3π2)=-sin(π2)-2f(3π2)=−sin(π2)−2
Step 6.4.2.1.2
The exact value of sin(π2)sin(π2) is 11.
f(3π2)=-1⋅1-2f(3π2)=−1⋅1−2
Step 6.4.2.1.3
Multiply -1−1 by 11.
f(3π2)=-1-2f(3π2)=−1−2
f(3π2)=-1-2f(3π2)=−1−2
Step 6.4.2.2
Subtract 22 from -1−1.
f(3π2)=-3f(3π2)=−3
Step 6.4.2.3
The final answer is -3−3.
-3−3
-3−3
-3−3
Step 6.5
Find the point at x=2πx=2π.
Step 6.5.1
Replace the variable xx with 2π2π in the expression.
f(2π)=sin(2π)-2f(2π)=sin(2π)−2
Step 6.5.2
Simplify the result.
Step 6.5.2.1
Simplify each term.
Step 6.5.2.1.1
Subtract full rotations of 2π2π until the angle is greater than or equal to 00 and less than 2π2π.
f(2π)=sin(0)-2f(2π)=sin(0)−2
Step 6.5.2.1.2
The exact value of sin(0)sin(0) is 00.
f(2π)=0-2f(2π)=0−2
f(2π)=0-2f(2π)=0−2
Step 6.5.2.2
Subtract 22 from 00.
f(2π)=-2f(2π)=−2
Step 6.5.2.3
The final answer is -2−2.
-2−2
-2−2
-2−2
Step 6.6
List the points in a table.
xf(x)0-2π2-1π-23π2-32π-2xf(x)0−2π2−1π−23π2−32π−2
xf(x)0-2π2-1π-23π2-32π-2xf(x)0−2π2−1π−23π2−32π−2
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Amplitude: 1
Period: 2π
Phase Shift: None
Vertical Shift: -2
xf(x)0-2π2-1π-23π2-32π-2
Step 8