Trigonometry Examples

Expand Using Sum/Difference Formulas tan(165)
tan(165)tan(165)
Step 1
First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, 165165 can be split into 120+45120+45.
tan(120+45)tan(120+45)
Step 2
Use the sum formula for tangent to simplify the expression. The formula states that tan(A+B)=tan(A)+tan(B)1-tan(A)tan(B)tan(A+B)=tan(A)+tan(B)1tan(A)tan(B).
tan(120)+tan(45)1-tan(120)tan(45)tan(120)+tan(45)1tan(120)tan(45)
Step 3
Simplify the numerator.
Tap for more steps...
Step 3.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
-tan(60)+tan(45)1-tan(120)tan(45)tan(60)+tan(45)1tan(120)tan(45)
Step 3.2
The exact value of tan(60)tan(60) is 33.
-3+tan(45)1-tan(120)tan(45)3+tan(45)1tan(120)tan(45)
Step 3.3
The exact value of tan(45)tan(45) is 11.
-3+11-tan(120)tan(45)3+11tan(120)tan(45)
-3+11-tan(120)tan(45)3+11tan(120)tan(45)
Step 4
Simplify the denominator.
Tap for more steps...
Step 4.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
-3+11--tan(60)tan(45)3+11tan(60)tan(45)
Step 4.2
The exact value of tan(60)tan(60) is 33.
-3+11--3tan(45)3+113tan(45)
Step 4.3
Multiply --33.
Tap for more steps...
Step 4.3.1
Multiply -11 by -11.
-3+11+13tan(45)3+11+13tan(45)
Step 4.3.2
Multiply 33 by 11.
-3+11+3tan(45)3+11+3tan(45)
-3+11+3tan(45)3+11+3tan(45)
Step 4.4
The exact value of tan(45)tan(45) is 11.
-3+11+313+11+31
Step 4.5
Multiply 33 by 11.
-3+11+33+11+3
-3+11+33+11+3
Step 5
Multiply -3+11+33+11+3 by 1-31-31313.
-3+11+31-31-33+11+31313
Step 6
Combine fractions.
Tap for more steps...
Step 6.1
Multiply -3+11+33+11+3 by 1-31-31313.
(-3+1)(1-3)(1+3)(1-3)(3+1)(13)(1+3)(13)
Step 6.2
Expand the denominator using the FOIL method.
(-3+1)(1-3)1-3+3-32(3+1)(13)13+332
Step 6.3
Simplify.
(-3+1)(1-3)-2(3+1)(13)2
(-3+1)(1-3)-2(3+1)(13)2
Step 7
Simplify the numerator.
Tap for more steps...
Step 7.1
Reorder terms.
(1-3)(1-3)-2(13)(13)2
Step 7.2
Raise 1-313 to the power of 11.
(1-3)1(1-3)-2(13)1(13)2
Step 7.3
Raise 1-313 to the power of 11.
(1-3)1(1-3)1-2(13)1(13)12
Step 7.4
Use the power rule aman=am+n to combine exponents.
(1-3)1+1-2
Step 7.5
Add 1 and 1.
(1-3)2-2
(1-3)2-2
Step 8
Rewrite (1-3)2 as (1-3)(1-3).
(1-3)(1-3)-2
Step 9
Expand (1-3)(1-3) using the FOIL Method.
Tap for more steps...
Step 9.1
Apply the distributive property.
1(1-3)-3(1-3)-2
Step 9.2
Apply the distributive property.
11+1(-3)-3(1-3)-2
Step 9.3
Apply the distributive property.
11+1(-3)-31-3(-3)-2
11+1(-3)-31-3(-3)-2
Step 10
Simplify and combine like terms.
Tap for more steps...
Step 10.1
Simplify each term.
Tap for more steps...
Step 10.1.1
Multiply 1 by 1.
1+1(-3)-31-3(-3)-2
Step 10.1.2
Multiply -3 by 1.
1-3-31-3(-3)-2
Step 10.1.3
Multiply -1 by 1.
1-3-3-3(-3)-2
Step 10.1.4
Multiply -3(-3).
Tap for more steps...
Step 10.1.4.1
Multiply -1 by -1.
1-3-3+133-2
Step 10.1.4.2
Multiply 3 by 1.
1-3-3+33-2
Step 10.1.4.3
Raise 3 to the power of 1.
1-3-3+313-2
Step 10.1.4.4
Raise 3 to the power of 1.
1-3-3+3131-2
Step 10.1.4.5
Use the power rule aman=am+n to combine exponents.
1-3-3+31+1-2
Step 10.1.4.6
Add 1 and 1.
1-3-3+32-2
1-3-3+32-2
Step 10.1.5
Rewrite 32 as 3.
Tap for more steps...
Step 10.1.5.1
Use nax=axn to rewrite 3 as 312.
1-3-3+(312)2-2
Step 10.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
1-3-3+3122-2
Step 10.1.5.3
Combine 12 and 2.
1-3-3+322-2
Step 10.1.5.4
Cancel the common factor of 2.
Tap for more steps...
Step 10.1.5.4.1
Cancel the common factor.
1-3-3+322-2
Step 10.1.5.4.2
Rewrite the expression.
1-3-3+31-2
1-3-3+31-2
Step 10.1.5.5
Evaluate the exponent.
1-3-3+3-2
1-3-3+3-2
1-3-3+3-2
Step 10.2
Add 1 and 3.
4-3-3-2
Step 10.3
Subtract 3 from -3.
4-23-2
4-23-2
Step 11
Cancel the common factor of 4-23 and -2.
Tap for more steps...
Step 11.1
Factor 2 out of 4.
2(2)-23-2
Step 11.2
Factor 2 out of -23.
2(2)+2(-3)-2
Step 11.3
Factor 2 out of 2(2)+2(-3).
2(2-3)-2
Step 11.4
Move the negative one from the denominator of 2-3-1.
-1(2-3)
-1(2-3)
Step 12
Rewrite -1(2-3) as -(2-3).
-(2-3)
Step 13
Apply the distributive property.
-12--3
Step 14
Multiply -1 by 2.
-2--3
Step 15
Multiply --3.
Tap for more steps...
Step 15.1
Multiply -1 by -1.
-2+13
Step 15.2
Multiply 3 by 1.
-2+3
-2+3
Step 16
The result can be shown in multiple forms.
Exact Form:
-2+3
Decimal Form:
-0.26794919
 [x2  12  π  xdx ]