Enter a problem...
Trigonometry Examples
tan(165)tan(165)
Step 1
First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, 165165 can be split into 120+45120+45.
tan(120+45)tan(120+45)
Step 2
Use the sum formula for tangent to simplify the expression. The formula states that tan(A+B)=tan(A)+tan(B)1-tan(A)tan(B)tan(A+B)=tan(A)+tan(B)1−tan(A)tan(B).
tan(120)+tan(45)1-tan(120)tan(45)tan(120)+tan(45)1−tan(120)tan(45)
Step 3
Step 3.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
-tan(60)+tan(45)1-tan(120)tan(45)−tan(60)+tan(45)1−tan(120)tan(45)
Step 3.2
The exact value of tan(60)tan(60) is √3√3.
-√3+tan(45)1-tan(120)tan(45)−√3+tan(45)1−tan(120)tan(45)
Step 3.3
The exact value of tan(45)tan(45) is 11.
-√3+11-tan(120)tan(45)−√3+11−tan(120)tan(45)
-√3+11-tan(120)tan(45)−√3+11−tan(120)tan(45)
Step 4
Step 4.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
-√3+11--tan(60)tan(45)−√3+11−−tan(60)tan(45)
Step 4.2
The exact value of tan(60)tan(60) is √3√3.
-√3+11--√3tan(45)−√3+11−−√3tan(45)
Step 4.3
Multiply --√3−−√3.
Step 4.3.1
Multiply -1−1 by -1−1.
-√3+11+1√3tan(45)−√3+11+1√3tan(45)
Step 4.3.2
Multiply √3√3 by 11.
-√3+11+√3tan(45)−√3+11+√3tan(45)
-√3+11+√3tan(45)−√3+11+√3tan(45)
Step 4.4
The exact value of tan(45)tan(45) is 11.
-√3+11+√3⋅1−√3+11+√3⋅1
Step 4.5
Multiply √3√3 by 11.
-√3+11+√3−√3+11+√3
-√3+11+√3−√3+11+√3
Step 5
Multiply -√3+11+√3−√3+11+√3 by 1-√31-√31−√31−√3.
-√3+11+√3⋅1-√31-√3−√3+11+√3⋅1−√31−√3
Step 6
Step 6.1
Multiply -√3+11+√3−√3+11+√3 by 1-√31-√31−√31−√3.
(-√3+1)(1-√3)(1+√3)(1-√3)(−√3+1)(1−√3)(1+√3)(1−√3)
Step 6.2
Expand the denominator using the FOIL method.
(-√3+1)(1-√3)1-√3+√3-√32(−√3+1)(1−√3)1−√3+√3−√32
Step 6.3
Simplify.
(-√3+1)(1-√3)-2(−√3+1)(1−√3)−2
(-√3+1)(1-√3)-2(−√3+1)(1−√3)−2
Step 7
Step 7.1
Reorder terms.
(1-√3)(1-√3)-2(1−√3)(1−√3)−2
Step 7.2
Raise 1-√31−√3 to the power of 11.
(1-√3)1(1-√3)-2(1−√3)1(1−√3)−2
Step 7.3
Raise 1-√31−√3 to the power of 11.
(1-√3)1(1-√3)1-2(1−√3)1(1−√3)1−2
Step 7.4
Use the power rule aman=am+n to combine exponents.
(1-√3)1+1-2
Step 7.5
Add 1 and 1.
(1-√3)2-2
(1-√3)2-2
Step 8
Rewrite (1-√3)2 as (1-√3)(1-√3).
(1-√3)(1-√3)-2
Step 9
Step 9.1
Apply the distributive property.
1(1-√3)-√3(1-√3)-2
Step 9.2
Apply the distributive property.
1⋅1+1(-√3)-√3(1-√3)-2
Step 9.3
Apply the distributive property.
1⋅1+1(-√3)-√3⋅1-√3(-√3)-2
1⋅1+1(-√3)-√3⋅1-√3(-√3)-2
Step 10
Step 10.1
Simplify each term.
Step 10.1.1
Multiply 1 by 1.
1+1(-√3)-√3⋅1-√3(-√3)-2
Step 10.1.2
Multiply -√3 by 1.
1-√3-√3⋅1-√3(-√3)-2
Step 10.1.3
Multiply -1 by 1.
1-√3-√3-√3(-√3)-2
Step 10.1.4
Multiply -√3(-√3).
Step 10.1.4.1
Multiply -1 by -1.
1-√3-√3+1√3√3-2
Step 10.1.4.2
Multiply √3 by 1.
1-√3-√3+√3√3-2
Step 10.1.4.3
Raise √3 to the power of 1.
1-√3-√3+√31√3-2
Step 10.1.4.4
Raise √3 to the power of 1.
1-√3-√3+√31√31-2
Step 10.1.4.5
Use the power rule aman=am+n to combine exponents.
1-√3-√3+√31+1-2
Step 10.1.4.6
Add 1 and 1.
1-√3-√3+√32-2
1-√3-√3+√32-2
Step 10.1.5
Rewrite √32 as 3.
Step 10.1.5.1
Use n√ax=axn to rewrite √3 as 312.
1-√3-√3+(312)2-2
Step 10.1.5.2
Apply the power rule and multiply exponents, (am)n=amn.
1-√3-√3+312⋅2-2
Step 10.1.5.3
Combine 12 and 2.
1-√3-√3+322-2
Step 10.1.5.4
Cancel the common factor of 2.
Step 10.1.5.4.1
Cancel the common factor.
1-√3-√3+322-2
Step 10.1.5.4.2
Rewrite the expression.
1-√3-√3+31-2
1-√3-√3+31-2
Step 10.1.5.5
Evaluate the exponent.
1-√3-√3+3-2
1-√3-√3+3-2
1-√3-√3+3-2
Step 10.2
Add 1 and 3.
4-√3-√3-2
Step 10.3
Subtract √3 from -√3.
4-2√3-2
4-2√3-2
Step 11
Step 11.1
Factor 2 out of 4.
2(2)-2√3-2
Step 11.2
Factor 2 out of -2√3.
2(2)+2(-√3)-2
Step 11.3
Factor 2 out of 2(2)+2(-√3).
2(2-√3)-2
Step 11.4
Move the negative one from the denominator of 2-√3-1.
-1⋅(2-√3)
-1⋅(2-√3)
Step 12
Rewrite -1⋅(2-√3) as -(2-√3).
-(2-√3)
Step 13
Apply the distributive property.
-1⋅2--√3
Step 14
Multiply -1 by 2.
-2--√3
Step 15
Step 15.1
Multiply -1 by -1.
-2+1√3
Step 15.2
Multiply √3 by 1.
-2+√3
-2+√3
Step 16
The result can be shown in multiple forms.
Exact Form:
-2+√3
Decimal Form:
-0.26794919…