Trigonometry Examples

Simplify (sin(theta)^3+cos(theta)^3)/(sin(theta)+cos(theta))
sin3(θ)+cos3(θ)sin(θ)+cos(θ)
Step 1
Simplify the numerator.
Tap for more steps...
Step 1.1
Since both terms are perfect cubes, factor using the sum of cubes formula, a3+b3=(a+b)(a2-ab+b2) where a=sin(θ) and b=cos(θ).
(sin(θ)+cos(θ))(sin2(θ)-sin(θ)cos(θ)+cos2(θ))sin(θ)+cos(θ)
Step 1.2
Simplify.
Tap for more steps...
Step 1.2.1
Rearrange terms.
(sin(θ)+cos(θ))(-sin(θ)cos(θ)+sin2(θ)+cos2(θ))sin(θ)+cos(θ)
Step 1.2.2
Apply pythagorean identity.
(sin(θ)+cos(θ))(-sin(θ)cos(θ)+1)sin(θ)+cos(θ)
(sin(θ)+cos(θ))(-sin(θ)cos(θ)+1)sin(θ)+cos(θ)
(sin(θ)+cos(θ))(-sin(θ)cos(θ)+1)sin(θ)+cos(θ)
Step 2
Cancel the common factor of sin(θ)+cos(θ).
Tap for more steps...
Step 2.1
Cancel the common factor.
(sin(θ)+cos(θ))(-sin(θ)cos(θ)+1)sin(θ)+cos(θ)
Step 2.2
Divide -sin(θ)cos(θ)+1 by 1.
-sin(θ)cos(θ)+1
-sin(θ)cos(θ)+1
 [x2  12  π  xdx ]