Trigonometry Examples

Simplify square root of ((1-cos(theta))(1+cos(theta)))/(cos(theta)^2)
(1-cos(θ))(1+cos(θ))cos2(θ)(1cos(θ))(1+cos(θ))cos2(θ)
Step 1
Rewrite (1-cos(θ))(1+cos(θ))cos2(θ)(1cos(θ))(1+cos(θ))cos2(θ) as (1cos(θ))2((1-cos(θ))(1+cos(θ)))(1cos(θ))2((1cos(θ))(1+cos(θ))).
Tap for more steps...
Step 1.1
Factor the perfect power 1212 out of (1-cos(θ))(1+cos(θ))(1cos(θ))(1+cos(θ)).
12((1-cos(θ))(1+cos(θ)))cos2(θ)12((1cos(θ))(1+cos(θ)))cos2(θ)
Step 1.2
Factor the perfect power cos2(θ)cos2(θ) out of cos2(θ)cos2(θ).
12((1-cos(θ))(1+cos(θ)))cos2(θ)112((1cos(θ))(1+cos(θ)))cos2(θ)1
Step 1.3
Rearrange the fraction 12((1-cos(θ))(1+cos(θ)))cos2(θ)112((1cos(θ))(1+cos(θ)))cos2(θ)1.
(1cos(θ))2((1-cos(θ))(1+cos(θ)))(1cos(θ))2((1cos(θ))(1+cos(θ)))
(1cos(θ))2((1-cos(θ))(1+cos(θ)))(1cos(θ))2((1cos(θ))(1+cos(θ)))
Step 2
Pull terms out from under the radical.
1cos(θ)(1-cos(θ))(1+cos(θ))1cos(θ)(1cos(θ))(1+cos(θ))
Step 3
Convert from 1cos(θ)1cos(θ) to sec(θ)sec(θ).
sec(θ)(1-cos(θ))(1+cos(θ))sec(θ)(1cos(θ))(1+cos(θ))
 [x2  12  π  xdx ]  x2  12  π  xdx