Enter a problem...
Trigonometry Examples
cos(7π12)cos(7π12)
Step 1
Rewrite 7π127π12 as an angle where the values of the six trigonometric functions are known divided by 22.
cos(7π62)cos(7π62)
Step 2
Apply the cosine half-angle identity cos(x2)=±√1+cos(x)2cos(x2)=±√1+cos(x)2.
±√1+cos(7π6)2±
⎷1+cos(7π6)2
Step 3
Change the ±± to -− because cosine is negative in the second quadrant.
-√1+cos(7π6)2−
⎷1+cos(7π6)2
Step 4
Step 4.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
-√1-cos(π6)2−
⎷1−cos(π6)2
Step 4.2
The exact value of cos(π6)cos(π6) is √32√32.
-√1-√322−√1−√322
Step 4.3
Write 11 as a fraction with a common denominator.
-√22-√322−√22−√322
Step 4.4
Combine the numerators over the common denominator.
-√2-√322−√2−√322
Step 4.5
Multiply the numerator by the reciprocal of the denominator.
-√2-√32⋅12−√2−√32⋅12
Step 4.6
Multiply 2-√32⋅122−√32⋅12.
Step 4.6.1
Multiply 2-√322−√32 by 1212.
-√2-√32⋅2−√2−√32⋅2
Step 4.6.2
Multiply 22 by 22.
-√2-√34−√2−√34
-√2-√34−√2−√34
Step 4.7
Rewrite √2-√34√2−√34 as √2-√3√4√2−√3√4.
-√2-√3√4−√2−√3√4
Step 4.8
Simplify the denominator.
Step 4.8.1
Rewrite 44 as 2222.
-√2-√3√22−√2−√3√22
Step 4.8.2
Pull terms out from under the radical, assuming positive real numbers.
-√2-√32−√2−√32
-√2-√32−√2−√32
-√2-√32−√2−√32
Step 5
The result can be shown in multiple forms.
Exact Form:
-√2-√32−√2−√32
Decimal Form:
-0.25881904…−0.25881904…