Trigonometry Examples

Find the Exact Value cos((7pi)/12)
cos(7π12)cos(7π12)
Step 1
Rewrite 7π127π12 as an angle where the values of the six trigonometric functions are known divided by 22.
cos(7π62)cos(7π62)
Step 2
Apply the cosine half-angle identity cos(x2)=±1+cos(x)2cos(x2)=±1+cos(x)2.
±1+cos(7π6)2± 1+cos(7π6)2
Step 3
Change the ±± to - because cosine is negative in the second quadrant.
-1+cos(7π6)2 1+cos(7π6)2
Step 4
Simplify -1+cos(7π6)2 1+cos(7π6)2.
Tap for more steps...
Step 4.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the third quadrant.
-1-cos(π6)2 1cos(π6)2
Step 4.2
The exact value of cos(π6)cos(π6) is 3232.
-1-3221322
Step 4.3
Write 11 as a fraction with a common denominator.
-22-32222322
Step 4.4
Combine the numerators over the common denominator.
-2-3222322
Step 4.5
Multiply the numerator by the reciprocal of the denominator.
-2-321223212
Step 4.6
Multiply 2-321223212.
Tap for more steps...
Step 4.6.1
Multiply 2-32232 by 1212.
-2-3222322
Step 4.6.2
Multiply 22 by 22.
-2-34234
-2-34234
Step 4.7
Rewrite 2-34234 as 2-34234.
-2-34234
Step 4.8
Simplify the denominator.
Tap for more steps...
Step 4.8.1
Rewrite 44 as 2222.
-2-3222322
Step 4.8.2
Pull terms out from under the radical, assuming positive real numbers.
-2-32232
-2-32232
-2-32232
Step 5
The result can be shown in multiple forms.
Exact Form:
-2-32232
Decimal Form:
-0.258819040.25881904
Enter a problem...
 [x2  12  π  xdx ]  x2  12  π  xdx