Trigonometry Examples

Verify the Identity tan(x)sin(x)+cos(x)=sec(x)
tan(x)sin(x)+cos(x)=sec(x)
Step 1
Start on the left side.
tan(x)sin(x)+cos(x)
Step 2
Simplify each term.
Tap for more steps...
Step 2.1
Rewrite tan(x) in terms of sines and cosines.
sin(x)cos(x)sin(x)+cos(x)
Step 2.2
Multiply sin(x)cos(x)sin(x).
Tap for more steps...
Step 2.2.1
Combine sin(x)cos(x) and sin(x).
sin(x)sin(x)cos(x)+cos(x)
Step 2.2.2
Raise sin(x) to the power of 1.
sin1(x)sin(x)cos(x)+cos(x)
Step 2.2.3
Raise sin(x) to the power of 1.
sin1(x)sin1(x)cos(x)+cos(x)
Step 2.2.4
Use the power rule aman=am+n to combine exponents.
sin(x)1+1cos(x)+cos(x)
Step 2.2.5
Add 1 and 1.
sin2(x)cos(x)+cos(x)
sin2(x)cos(x)+cos(x)
sin2(x)cos(x)+cos(x)
Step 3
Apply Pythagorean identity in reverse.
1-cos2(x)cos(x)+cos(x)
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify the numerator.
Tap for more steps...
Step 4.1.1
Rewrite 1 as 12.
12-cos(x)2cos(x)+cos(x)
Step 4.1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=cos(x).
(1+cos(x))(1-cos(x))cos(x)+cos(x)
(1+cos(x))(1-cos(x))cos(x)+cos(x)
Step 4.2
To write cos(x) as a fraction with a common denominator, multiply by cos(x)cos(x).
(1+cos(x))(1-cos(x))cos(x)+cos(x)cos(x)cos(x)
Step 4.3
Combine the numerators over the common denominator.
(1+cos(x))(1-cos(x))+cos(x)cos(x)cos(x)
Step 4.4
Simplify the numerator.
1cos(x)
1cos(x)
Step 5
Rewrite 1cos(x) as sec(x).
sec(x)
Step 6
Because the two sides have been shown to be equivalent, the equation is an identity.
tan(x)sin(x)+cos(x)=sec(x) is an identity
 [x2  12  π  xdx ]