Trigonometry Examples

Verify the Identity (sin(x))/(1-cos(x))+(sin(x))/(1+cos(x))=2csc(x)
sin(x)1-cos(x)+sin(x)1+cos(x)=2csc(x)
Step 1
Start on the left side.
sin(x)1-cos(x)+sin(x)1+cos(x)
Step 2
Add fractions.
Tap for more steps...
Step 2.1
To write sin(x)1-cos(x) as a fraction with a common denominator, multiply by 1+cos(x)1+cos(x).
sin(x)1-cos(x)1+cos(x)1+cos(x)+sin(x)1+cos(x)
Step 2.2
To write sin(x)1+cos(x) as a fraction with a common denominator, multiply by 1-cos(x)1-cos(x).
sin(x)1-cos(x)1+cos(x)1+cos(x)+sin(x)1+cos(x)1-cos(x)1-cos(x)
Step 2.3
Write each expression with a common denominator of (1-cos(x))(1+cos(x)), by multiplying each by an appropriate factor of 1.
Tap for more steps...
Step 2.3.1
Multiply sin(x)1-cos(x) by 1+cos(x)1+cos(x).
sin(x)(1+cos(x))(1-cos(x))(1+cos(x))+sin(x)1+cos(x)1-cos(x)1-cos(x)
Step 2.3.2
Multiply sin(x)1+cos(x) by 1-cos(x)1-cos(x).
sin(x)(1+cos(x))(1-cos(x))(1+cos(x))+sin(x)(1-cos(x))(1+cos(x))(1-cos(x))
Step 2.3.3
Reorder the factors of (1-cos(x))(1+cos(x)).
sin(x)(1+cos(x))(1+cos(x))(1-cos(x))+sin(x)(1-cos(x))(1+cos(x))(1-cos(x))
sin(x)(1+cos(x))(1+cos(x))(1-cos(x))+sin(x)(1-cos(x))(1+cos(x))(1-cos(x))
Step 2.4
Combine the numerators over the common denominator.
sin(x)(1+cos(x))+sin(x)(1-cos(x))(1+cos(x))(1-cos(x))
sin(x)(1+cos(x))+sin(x)(1-cos(x))(1+cos(x))(1-cos(x))
Step 3
Simplify numerator.
Tap for more steps...
Step 3.1
Simplify each term.
Tap for more steps...
Step 3.1.1
Apply the distributive property.
sin(x)1+sin(x)cos(x)+sin(x)(1-cos(x))(1+cos(x))(1-cos(x))
Step 3.1.2
Multiply sin(x) by 1.
sin(x)+sin(x)cos(x)+sin(x)(1-cos(x))(1+cos(x))(1-cos(x))
Step 3.1.3
Apply the distributive property.
sin(x)+sin(x)cos(x)+sin(x)1+sin(x)(-cos(x))(1+cos(x))(1-cos(x))
Step 3.1.4
Multiply sin(x) by 1.
sin(x)+sin(x)cos(x)+sin(x)+sin(x)(-cos(x))(1+cos(x))(1-cos(x))
sin(x)+sin(x)cos(x)+sin(x)+sin(x)(-cos(x))(1+cos(x))(1-cos(x))
Step 3.2
Add sin(x) and sin(x).
sin(x)cos(x)+2sin(x)+sin(x)(-cos(x))(1+cos(x))(1-cos(x))
Step 3.3
Add sin(x)cos(x) and sin(x)(-cos(x)).
Tap for more steps...
Step 3.3.1
Reorder sin(x) and -1.
2sin(x)+sin(x)cos(x)-1sin(x)cos(x)(1+cos(x))(1-cos(x))
Step 3.3.2
Subtract sin(x)cos(x) from sin(x)cos(x).
2sin(x)+0(1+cos(x))(1-cos(x))
2sin(x)+0(1+cos(x))(1-cos(x))
Step 3.4
Add 2sin(x) and 0.
2sin(x)(1+cos(x))(1-cos(x))
2sin(x)(1+cos(x))(1-cos(x))
Step 4
Simplify denominator.
Tap for more steps...
Step 4.1
Expand (1+cos(x))(1-cos(x)) using the FOIL Method.
Tap for more steps...
Step 4.1.1
Apply the distributive property.
2sin(x)1(1-cos(x))+cos(x)(1-cos(x))
Step 4.1.2
Apply the distributive property.
2sin(x)11+1(-cos(x))+cos(x)(1-cos(x))
Step 4.1.3
Apply the distributive property.
2sin(x)11+1(-cos(x))+cos(x)1+cos(x)(-cos(x))
2sin(x)11+1(-cos(x))+cos(x)1+cos(x)(-cos(x))
Step 4.2
Simplify and combine like terms.
2sin(x)1-cos2(x)
2sin(x)1-cos2(x)
Step 5
Apply pythagorean identity.
2sin(x)sin2(x)
Step 6
Cancel the common factor of sin(x) and sin(x)2.
2sin(x)
Step 7
Rewrite 2sin(x) as 2csc(x).
2csc(x)
Step 8
Because the two sides have been shown to be equivalent, the equation is an identity.
sin(x)1-cos(x)+sin(x)1+cos(x)=2csc(x) is an identity
 [x2  12  π  xdx ]