Enter a problem...
Trigonometry Examples
tan(π12)tan(π12)
Step 1
First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, π12π12 can be split into π3-π4π3−π4.
tan(π3-π4)tan(π3−π4)
Step 2
Use the difference formula for tangent to simplify the expression. The formula states that tan(A-B)=tan(A)-tan(B)1+tan(A)tan(B)tan(A−B)=tan(A)−tan(B)1+tan(A)tan(B).
tan(π3)-tan(π4)1+tan(π3)tan(π4)tan(π3)−tan(π4)1+tan(π3)tan(π4)
Step 3
Remove parentheses.
tan(π3)-tan(π4)1+tan(π3)tan(π4)tan(π3)−tan(π4)1+tan(π3)tan(π4)
Step 4
Step 4.1
The exact value of tan(π3)tan(π3) is √3√3.
√3-tan(π4)1+tan(π3)tan(π4)√3−tan(π4)1+tan(π3)tan(π4)
Step 4.2
The exact value of tan(π4)tan(π4) is 11.
√3-1⋅11+tan(π3)tan(π4)√3−1⋅11+tan(π3)tan(π4)
Step 4.3
Multiply -1−1 by 11.
√3-11+tan(π3)tan(π4)√3−11+tan(π3)tan(π4)
√3-11+tan(π3)tan(π4)√3−11+tan(π3)tan(π4)
Step 5
Step 5.1
The exact value of tan(π3)tan(π3) is √3√3.
√3-11+√3tan(π4)√3−11+√3tan(π4)
Step 5.2
The exact value of tan(π4)tan(π4) is 11.
√3-11+√3⋅1√3−11+√3⋅1
Step 5.3
Multiply √3√3 by 11.
√3-11+√3√3−11+√3
√3-11+√3√3−11+√3
Step 6
Multiply √3-11+√3√3−11+√3 by 1-√31-√31−√31−√3.
√3-11+√3⋅1-√31-√3√3−11+√3⋅1−√31−√3
Step 7
Step 7.1
Multiply √3-11+√3√3−11+√3 by 1-√31-√31−√31−√3.
(√3-1)(1-√3)(1+√3)(1-√3)(√3−1)(1−√3)(1+√3)(1−√3)
Step 7.2
Expand the denominator using the FOIL method.
(√3-1)(1-√3)1-√3+√3-√32(√3−1)(1−√3)1−√3+√3−√32
Step 7.3
Simplify.
(√3-1)(1-√3)-2(√3−1)(1−√3)−2
(√3-1)(1-√3)-2(√3−1)(1−√3)−2
Step 8
Step 8.1
Factor -1−1 out of √3√3.
(-1(-√3)-1)(1-√3)-2(−1(−√3)−1)(1−√3)−2
Step 8.2
Rewrite -1−1 as -1(1)−1(1).
(-1(-√3)-1(1))(1-√3)-2(−1(−√3)−1(1))(1−√3)−2
Step 8.3
Factor -1−1 out of -1(-√3)-1(1)−1(−√3)−1(1).
-1(-√3+1)(1-√3)-2−1(−√3+1)(1−√3)−2
Step 8.4
Reorder terms.
-1(1-√3)(1-√3)-2−1(1−√3)(1−√3)−2
Step 8.5
Raise 1-√31−√3 to the power of 11.
-1((1-√3)1(1-√3))-2−1((1−√3)1(1−√3))−2
Step 8.6
Raise 1-√31−√3 to the power of 11.
-1((1-√3)1(1-√3)1)-2−1((1−√3)1(1−√3)1)−2
Step 8.7
Use the power rule aman=am+naman=am+n to combine exponents.
-1(1-√3)1+1-2−1(1−√3)1+1−2
Step 8.8
Add 11 and 11.
-1(1-√3)2-2−1(1−√3)2−2
-1(1-√3)2-2−1(1−√3)2−2
Step 9
Rewrite (1-√3)2(1−√3)2 as (1-√3)(1-√3)(1−√3)(1−√3).
-1((1-√3)(1-√3))-2−1((1−√3)(1−√3))−2
Step 10
Step 10.1
Apply the distributive property.
-1(1(1-√3)-√3(1-√3))-2−1(1(1−√3)−√3(1−√3))−2
Step 10.2
Apply the distributive property.
-1(1⋅1+1(-√3)-√3(1-√3))-2−1(1⋅1+1(−√3)−√3(1−√3))−2
Step 10.3
Apply the distributive property.
-1(1⋅1+1(-√3)-√3⋅1-√3(-√3))-2−1(1⋅1+1(−√3)−√3⋅1−√3(−√3))−2
-1(1⋅1+1(-√3)-√3⋅1-√3(-√3))-2−1(1⋅1+1(−√3)−√3⋅1−√3(−√3))−2
Step 11
Step 11.1
Simplify each term.
Step 11.1.1
Multiply 11 by 11.
-1(1+1(-√3)-√3⋅1-√3(-√3))-2−1(1+1(−√3)−√3⋅1−√3(−√3))−2
Step 11.1.2
Multiply -√3−√3 by 11.
-1(1-√3-√3⋅1-√3(-√3))-2−1(1−√3−√3⋅1−√3(−√3))−2
Step 11.1.3
Multiply -1−1 by 11.
-1(1-√3-√3-√3(-√3))-2−1(1−√3−√3−√3(−√3))−2
Step 11.1.4
Multiply -√3(-√3)−√3(−√3).
Step 11.1.4.1
Multiply -1−1 by -1−1.
-1(1-√3-√3+1√3√3)-2−1(1−√3−√3+1√3√3)−2
Step 11.1.4.2
Multiply √3√3 by 11.
-1(1-√3-√3+√3√3)-2−1(1−√3−√3+√3√3)−2
Step 11.1.4.3
Raise √3√3 to the power of 11.
-1(1-√3-√3+√31√3)-2−1(1−√3−√3+√31√3)−2
Step 11.1.4.4
Raise √3√3 to the power of 11.
-1(1-√3-√3+√31√31)-2−1(1−√3−√3+√31√31)−2
Step 11.1.4.5
Use the power rule aman=am+naman=am+n to combine exponents.
-1(1-√3-√3+√31+1)-2−1(1−√3−√3+√31+1)−2
Step 11.1.4.6
Add 11 and 11.
-1(1-√3-√3+√32)-2−1(1−√3−√3+√32)−2
-1(1-√3-√3+√32)-2−1(1−√3−√3+√32)−2
Step 11.1.5
Rewrite √32√32 as 33.
Step 11.1.5.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
-1(1-√3-√3+(312)2)-2−1(1−√3−√3+(312)2)−2
Step 11.1.5.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
-1(1-√3-√3+312⋅2)-2−1(1−√3−√3+312⋅2)−2
Step 11.1.5.3
Combine 1212 and 22.
-1(1-√3-√3+322)-2−1(1−√3−√3+322)−2
Step 11.1.5.4
Cancel the common factor of 22.
Step 11.1.5.4.1
Cancel the common factor.
-1(1-√3-√3+322)-2
Step 11.1.5.4.2
Rewrite the expression.
-1(1-√3-√3+31)-2
-1(1-√3-√3+31)-2
Step 11.1.5.5
Evaluate the exponent.
-1(1-√3-√3+3)-2
-1(1-√3-√3+3)-2
-1(1-√3-√3+3)-2
Step 11.2
Add 1 and 3.
-1(4-√3-√3)-2
Step 11.3
Subtract √3 from -√3.
-1(4-2√3)-2
-1(4-2√3)-2
Step 12
Step 12.1
Factor 2 out of -1(4-2√3).
2(-1(2-√3))-2
Step 12.2
Move the negative one from the denominator of -1(2-√3)-1.
-1⋅(-1(2-√3))
-1⋅(-1(2-√3))
Step 13
Rewrite -1⋅(-1(2-√3)) as -(-1(2-√3)).
-(-1(2-√3))
Step 14
Apply the distributive property.
-(-1⋅2-1(-√3))
Step 15
Multiply -1 by 2.
-(-2-1(-√3))
Step 16
Step 16.1
Multiply -1 by -1.
-(-2+1√3)
Step 16.2
Multiply √3 by 1.
-(-2+√3)
-(-2+√3)
Step 17
Apply the distributive property.
--2-√3
Step 18
Multiply -1 by -2.
2-√3
Step 19
The result can be shown in multiple forms.
Exact Form:
2-√3
Decimal Form:
0.26794919…