Trigonometry Examples

Expand Using Sum/Difference Formulas tan(pi/12)
tan(π12)tan(π12)
Step 1
First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, π12π12 can be split into π3-π4π3π4.
tan(π3-π4)tan(π3π4)
Step 2
Use the difference formula for tangent to simplify the expression. The formula states that tan(A-B)=tan(A)-tan(B)1+tan(A)tan(B)tan(AB)=tan(A)tan(B)1+tan(A)tan(B).
tan(π3)-tan(π4)1+tan(π3)tan(π4)tan(π3)tan(π4)1+tan(π3)tan(π4)
Step 3
Remove parentheses.
tan(π3)-tan(π4)1+tan(π3)tan(π4)tan(π3)tan(π4)1+tan(π3)tan(π4)
Step 4
Simplify the numerator.
Tap for more steps...
Step 4.1
The exact value of tan(π3)tan(π3) is 33.
3-tan(π4)1+tan(π3)tan(π4)3tan(π4)1+tan(π3)tan(π4)
Step 4.2
The exact value of tan(π4)tan(π4) is 11.
3-111+tan(π3)tan(π4)3111+tan(π3)tan(π4)
Step 4.3
Multiply -11 by 11.
3-11+tan(π3)tan(π4)311+tan(π3)tan(π4)
3-11+tan(π3)tan(π4)311+tan(π3)tan(π4)
Step 5
Simplify the denominator.
Tap for more steps...
Step 5.1
The exact value of tan(π3)tan(π3) is 33.
3-11+3tan(π4)311+3tan(π4)
Step 5.2
The exact value of tan(π4)tan(π4) is 11.
3-11+31311+31
Step 5.3
Multiply 33 by 11.
3-11+3311+3
3-11+3311+3
Step 6
Multiply 3-11+3311+3 by 1-31-31313.
3-11+31-31-3311+31313
Step 7
Combine fractions.
Tap for more steps...
Step 7.1
Multiply 3-11+3311+3 by 1-31-31313.
(3-1)(1-3)(1+3)(1-3)(31)(13)(1+3)(13)
Step 7.2
Expand the denominator using the FOIL method.
(3-1)(1-3)1-3+3-32(31)(13)13+332
Step 7.3
Simplify.
(3-1)(1-3)-2(31)(13)2
(3-1)(1-3)-2(31)(13)2
Step 8
Simplify the numerator.
Tap for more steps...
Step 8.1
Factor -11 out of 33.
(-1(-3)-1)(1-3)-2(1(3)1)(13)2
Step 8.2
Rewrite -11 as -1(1)1(1).
(-1(-3)-1(1))(1-3)-2(1(3)1(1))(13)2
Step 8.3
Factor -11 out of -1(-3)-1(1)1(3)1(1).
-1(-3+1)(1-3)-21(3+1)(13)2
Step 8.4
Reorder terms.
-1(1-3)(1-3)-21(13)(13)2
Step 8.5
Raise 1-313 to the power of 11.
-1((1-3)1(1-3))-21((13)1(13))2
Step 8.6
Raise 1-313 to the power of 11.
-1((1-3)1(1-3)1)-21((13)1(13)1)2
Step 8.7
Use the power rule aman=am+naman=am+n to combine exponents.
-1(1-3)1+1-21(13)1+12
Step 8.8
Add 11 and 11.
-1(1-3)2-21(13)22
-1(1-3)2-21(13)22
Step 9
Rewrite (1-3)2(13)2 as (1-3)(1-3)(13)(13).
-1((1-3)(1-3))-21((13)(13))2
Step 10
Expand (1-3)(1-3)(13)(13) using the FOIL Method.
Tap for more steps...
Step 10.1
Apply the distributive property.
-1(1(1-3)-3(1-3))-21(1(13)3(13))2
Step 10.2
Apply the distributive property.
-1(11+1(-3)-3(1-3))-21(11+1(3)3(13))2
Step 10.3
Apply the distributive property.
-1(11+1(-3)-31-3(-3))-21(11+1(3)313(3))2
-1(11+1(-3)-31-3(-3))-21(11+1(3)313(3))2
Step 11
Simplify and combine like terms.
Tap for more steps...
Step 11.1
Simplify each term.
Tap for more steps...
Step 11.1.1
Multiply 11 by 11.
-1(1+1(-3)-31-3(-3))-21(1+1(3)313(3))2
Step 11.1.2
Multiply -33 by 11.
-1(1-3-31-3(-3))-21(13313(3))2
Step 11.1.3
Multiply -11 by 11.
-1(1-3-3-3(-3))-21(1333(3))2
Step 11.1.4
Multiply -3(-3)3(3).
Tap for more steps...
Step 11.1.4.1
Multiply -11 by -11.
-1(1-3-3+133)-21(133+133)2
Step 11.1.4.2
Multiply 33 by 11.
-1(1-3-3+33)-21(133+33)2
Step 11.1.4.3
Raise 33 to the power of 11.
-1(1-3-3+313)-21(133+313)2
Step 11.1.4.4
Raise 33 to the power of 11.
-1(1-3-3+3131)-21(133+3131)2
Step 11.1.4.5
Use the power rule aman=am+naman=am+n to combine exponents.
-1(1-3-3+31+1)-21(133+31+1)2
Step 11.1.4.6
Add 11 and 11.
-1(1-3-3+32)-21(133+32)2
-1(1-3-3+32)-21(133+32)2
Step 11.1.5
Rewrite 3232 as 33.
Tap for more steps...
Step 11.1.5.1
Use nax=axnnax=axn to rewrite 33 as 312312.
-1(1-3-3+(312)2)-21(133+(312)2)2
Step 11.1.5.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
-1(1-3-3+3122)-21(133+3122)2
Step 11.1.5.3
Combine 1212 and 22.
-1(1-3-3+322)-21(133+322)2
Step 11.1.5.4
Cancel the common factor of 22.
Tap for more steps...
Step 11.1.5.4.1
Cancel the common factor.
-1(1-3-3+322)-2
Step 11.1.5.4.2
Rewrite the expression.
-1(1-3-3+31)-2
-1(1-3-3+31)-2
Step 11.1.5.5
Evaluate the exponent.
-1(1-3-3+3)-2
-1(1-3-3+3)-2
-1(1-3-3+3)-2
Step 11.2
Add 1 and 3.
-1(4-3-3)-2
Step 11.3
Subtract 3 from -3.
-1(4-23)-2
-1(4-23)-2
Step 12
Cancel the common factor of 4-23 and -2.
Tap for more steps...
Step 12.1
Factor 2 out of -1(4-23).
2(-1(2-3))-2
Step 12.2
Move the negative one from the denominator of -1(2-3)-1.
-1(-1(2-3))
-1(-1(2-3))
Step 13
Rewrite -1(-1(2-3)) as -(-1(2-3)).
-(-1(2-3))
Step 14
Apply the distributive property.
-(-12-1(-3))
Step 15
Multiply -1 by 2.
-(-2-1(-3))
Step 16
Multiply -1(-3).
Tap for more steps...
Step 16.1
Multiply -1 by -1.
-(-2+13)
Step 16.2
Multiply 3 by 1.
-(-2+3)
-(-2+3)
Step 17
Apply the distributive property.
--2-3
Step 18
Multiply -1 by -2.
2-3
Step 19
The result can be shown in multiple forms.
Exact Form:
2-3
Decimal Form:
0.26794919
 [x2  12  π  xdx ]