Trigonometry Examples

Expand Using Sum/Difference Formulas cos(105)
cos(105)
Step 1
First, split the angle into two angles where the values of the six trigonometric functions are known. In this case, 105 can be split into 45+60.
cos(45+60)
Step 2
Use the sum formula for cosine to simplify the expression. The formula states that cos(A+B)=-(cos(A)cos(B)+sin(A)sin(B)).
cos(60)cos(45)-sin(60)sin(45)
Step 3
Remove parentheses.
cos(60)cos(45)-sin(60)sin(45)
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
The exact value of cos(60) is 12.
12cos(45)-sin(60)sin(45)
Step 4.2
The exact value of cos(45) is 22.
1222-sin(60)sin(45)
Step 4.3
Multiply 1222.
Tap for more steps...
Step 4.3.1
Multiply 12 by 22.
222-sin(60)sin(45)
Step 4.3.2
Multiply 2 by 2.
24-sin(60)sin(45)
24-sin(60)sin(45)
Step 4.4
The exact value of sin(60) is 32.
24-32sin(45)
Step 4.5
The exact value of sin(45) is 22.
24-3222
Step 4.6
Multiply -3222.
Tap for more steps...
Step 4.6.1
Multiply 22 by 32.
24-2322
Step 4.6.2
Combine using the product rule for radicals.
24-2322
Step 4.6.3
Multiply 2 by 3.
24-622
Step 4.6.4
Multiply 2 by 2.
24-64
24-64
24-64
Step 5
Combine the numerators over the common denominator.
2-64
Step 6
The result can be shown in multiple forms.
Exact Form:
2-64
Decimal Form:
-0.25881904
cos(105)
(
(
)
)
|
|
[
[
]
]
°
°
7
7
8
8
9
9
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]