Trigonometry Examples

Convert to Polar Coordinates (-3 square root of 3,3)
(-33,3)(33,3)
Step 1
Convert from rectangular coordinates (x,y)(x,y) to polar coordinates (r,θ)(r,θ) using the conversion formulas.
r=x2+y2r=x2+y2
θ=tan-1(yx)θ=tan1(yx)
Step 2
Replace xx and yy with the actual values.
r=(-33)2+(3)2r=(33)2+(3)2
θ=tan-1(yx)θ=tan1(yx)
Step 3
Find the magnitude of the polar coordinate.
Tap for more steps...
Step 3.1
Simplify the expression.
Tap for more steps...
Step 3.1.1
Apply the product rule to -3333.
r=(-3)232+(3)2r=(3)232+(3)2
θ=tan-1(yx)θ=tan1(yx)
Step 3.1.2
Raise -33 to the power of 22.
r=932+(3)2r=932+(3)2
θ=tan-1(yx)θ=tan1(yx)
r=932+(3)2r=932+(3)2
θ=tan-1(yx)θ=tan1(yx)
Step 3.2
Rewrite 3232 as 33.
Tap for more steps...
Step 3.2.1
Use nax=axnnax=axn to rewrite 33 as 312312.
r=9(312)2+(3)2r=9(312)2+(3)2
θ=tan-1(yx)θ=tan1(yx)
Step 3.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
r=93122+(3)2r=93122+(3)2
θ=tan-1(yx)θ=tan1(yx)
Step 3.2.3
Combine 1212 and 22.
r=9322+(3)2r=9322+(3)2
θ=tan-1(yx)θ=tan1(yx)
Step 3.2.4
Cancel the common factor of 22.
Tap for more steps...
Step 3.2.4.1
Cancel the common factor.
r=9322+(3)2
θ=tan-1(yx)
Step 3.2.4.2
Rewrite the expression.
r=93+(3)2
θ=tan-1(yx)
r=93+(3)2
θ=tan-1(yx)
Step 3.2.5
Evaluate the exponent.
r=93+(3)2
θ=tan-1(yx)
r=93+(3)2
θ=tan-1(yx)
Step 3.3
Simplify the expression.
Tap for more steps...
Step 3.3.1
Multiply 9 by 3.
r=27+(3)2
θ=tan-1(yx)
Step 3.3.2
Raise 3 to the power of 2.
r=27+9
θ=tan-1(yx)
Step 3.3.3
Add 27 and 9.
r=36
θ=tan-1(yx)
Step 3.3.4
Rewrite 36 as 62.
r=62
θ=tan-1(yx)
Step 3.3.5
Pull terms out from under the radical, assuming positive real numbers.
r=6
θ=tan-1(yx)
r=6
θ=tan-1(yx)
r=6
θ=tan-1(yx)
Step 4
Replace x and y with the actual values.
r=6
θ=tan-1(3-33)
Step 5
The inverse tangent of -33 is θ=150°.
r=6
θ=150°
Step 6
This is the result of the conversion to polar coordinates in (r,θ) form.
(6,150°)
 [x2  12  π  xdx ]