Enter a problem...
Trigonometry Examples
(-3√3,3)(−3√3,3)
Step 1
Convert from rectangular coordinates (x,y)(x,y) to polar coordinates (r,θ)(r,θ) using the conversion formulas.
r=√x2+y2r=√x2+y2
θ=tan-1(yx)θ=tan−1(yx)
Step 2
Replace xx and yy with the actual values.
r=√(-3√3)2+(3)2r=√(−3√3)2+(3)2
θ=tan-1(yx)θ=tan−1(yx)
Step 3
Step 3.1
Simplify the expression.
Step 3.1.1
Apply the product rule to -3√3−3√3.
r=√(-3)2√32+(3)2r=√(−3)2√32+(3)2
θ=tan-1(yx)θ=tan−1(yx)
Step 3.1.2
Raise -3−3 to the power of 22.
r=√9√32+(3)2r=√9√32+(3)2
θ=tan-1(yx)θ=tan−1(yx)
r=√9√32+(3)2r=√9√32+(3)2
θ=tan-1(yx)θ=tan−1(yx)
Step 3.2
Rewrite √32√32 as 33.
Step 3.2.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
r=√9(312)2+(3)2r=√9(312)2+(3)2
θ=tan-1(yx)θ=tan−1(yx)
Step 3.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
r=√9⋅312⋅2+(3)2r=√9⋅312⋅2+(3)2
θ=tan-1(yx)θ=tan−1(yx)
Step 3.2.3
Combine 1212 and 22.
r=√9⋅322+(3)2r=√9⋅322+(3)2
θ=tan-1(yx)θ=tan−1(yx)
Step 3.2.4
Cancel the common factor of 22.
Step 3.2.4.1
Cancel the common factor.
r=√9⋅322+(3)2
θ=tan-1(yx)
Step 3.2.4.2
Rewrite the expression.
r=√9⋅3+(3)2
θ=tan-1(yx)
r=√9⋅3+(3)2
θ=tan-1(yx)
Step 3.2.5
Evaluate the exponent.
r=√9⋅3+(3)2
θ=tan-1(yx)
r=√9⋅3+(3)2
θ=tan-1(yx)
Step 3.3
Simplify the expression.
Step 3.3.1
Multiply 9 by 3.
r=√27+(3)2
θ=tan-1(yx)
Step 3.3.2
Raise 3 to the power of 2.
r=√27+9
θ=tan-1(yx)
Step 3.3.3
Add 27 and 9.
r=√36
θ=tan-1(yx)
Step 3.3.4
Rewrite 36 as 62.
r=√62
θ=tan-1(yx)
Step 3.3.5
Pull terms out from under the radical, assuming positive real numbers.
r=6
θ=tan-1(yx)
r=6
θ=tan-1(yx)
r=6
θ=tan-1(yx)
Step 4
Replace x and y with the actual values.
r=6
θ=tan-1(3-3√3)
Step 5
The inverse tangent of -√33 is θ=150°.
r=6
θ=150°
Step 6
This is the result of the conversion to polar coordinates in (r,θ) form.
(6,150°)