Enter a problem...
Trigonometry Examples
y=cos(x+3)y=cos(x+3)
Step 1
Use the form acos(bx-c)+dacos(bx−c)+d to find the variables used to find the amplitude, period, phase shift, and vertical shift.
a=1a=1
b=1b=1
c=-3c=−3
d=0d=0
Step 2
Find the amplitude |a||a|.
Amplitude: 11
Step 3
Step 3.1
The period of the function can be calculated using 2π|b|2π|b|.
2π|b|2π|b|
Step 3.2
Replace bb with 11 in the formula for period.
2π|1|2π|1|
Step 3.3
The absolute value is the distance between a number and zero. The distance between 00 and 11 is 11.
2π12π1
Step 3.4
Divide 2π2π by 11.
2π2π
2π2π
Step 4
Step 4.1
The phase shift of the function can be calculated from cbcb.
Phase Shift: cbcb
Step 4.2
Replace the values of cc and bb in the equation for phase shift.
Phase Shift: -31−31
Step 4.3
Divide -3−3 by 11.
Phase Shift: -3−3
Phase Shift: -3−3
Step 5
List the properties of the trigonometric function.
Amplitude: 11
Period: 2π2π
Phase Shift: -3−3 (33 to the left)
Vertical Shift: None
Step 6
Step 6.1
Find the point at x=-3x=−3.
Step 6.1.1
Replace the variable xx with -3−3 in the expression.
f(-3)=cos((-3)+3)f(−3)=cos((−3)+3)
Step 6.1.2
Simplify the result.
Step 6.1.2.1
Add -3−3 and 33.
f(-3)=cos(0)f(−3)=cos(0)
Step 6.1.2.2
The exact value of cos(0)cos(0) is 11.
f(-3)=1f(−3)=1
Step 6.1.2.3
The final answer is 11.
11
11
11
Step 6.2
Find the point at x=π2-3x=π2−3.
Step 6.2.1
Replace the variable xx with π2-3π2−3 in the expression.
f(π2-3)=cos((π2-3)+3)f(π2−3)=cos((π2−3)+3)
Step 6.2.2
Simplify the result.
Step 6.2.2.1
Add -3−3 and 33.
f(π2-3)=cos(π2+0)f(π2−3)=cos(π2+0)
Step 6.2.2.2
Add π2π2 and 00.
f(π2-3)=cos(π2)f(π2−3)=cos(π2)
Step 6.2.2.3
The exact value of cos(π2)cos(π2) is 00.
f(π2-3)=0f(π2−3)=0
Step 6.2.2.4
The final answer is 00.
00
00
00
Step 6.3
Find the point at x=π-3x=π−3.
Step 6.3.1
Replace the variable xx with π-3π−3 in the expression.
f(π-3)=cos((π-3)+3)f(π−3)=cos((π−3)+3)
Step 6.3.2
Simplify the result.
Step 6.3.2.1
Add -3−3 and 33.
f(π-3)=cos(π+0)f(π−3)=cos(π+0)
Step 6.3.2.2
Add ππ and 00.
f(π-3)=cos(π)f(π−3)=cos(π)
Step 6.3.2.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
f(π-3)=-cos(0)f(π−3)=−cos(0)
Step 6.3.2.4
The exact value of cos(0)cos(0) is 11.
f(π-3)=-1⋅1f(π−3)=−1⋅1
Step 6.3.2.5
Multiply -1−1 by 11.
f(π-3)=-1f(π−3)=−1
Step 6.3.2.6
The final answer is -1−1.
-1−1
-1−1
-1−1
Step 6.4
Find the point at x=3π2-3x=3π2−3.
Step 6.4.1
Replace the variable xx with 3π2-33π2−3 in the expression.
f(3π2-3)=cos((3π2-3)+3)
Step 6.4.2
Simplify the result.
Step 6.4.2.1
Add -3 and 3.
f(3π2-3)=cos(3π2+0)
Step 6.4.2.2
Add 3π2 and 0.
f(3π2-3)=cos(3π2)
Step 6.4.2.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
f(3π2-3)=cos(π2)
Step 6.4.2.4
The exact value of cos(π2) is 0.
f(3π2-3)=0
Step 6.4.2.5
The final answer is 0.
0
0
0
Step 6.5
Find the point at x=2π-3.
Step 6.5.1
Replace the variable x with 2π-3 in the expression.
f(2π-3)=cos((2π-3)+3)
Step 6.5.2
Simplify the result.
Step 6.5.2.1
Add -3 and 3.
f(2π-3)=cos(2π+0)
Step 6.5.2.2
Add 2π and 0.
f(2π-3)=cos(2π)
Step 6.5.2.3
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
f(2π-3)=cos(0)
Step 6.5.2.4
The exact value of cos(0) is 1.
f(2π-3)=1
Step 6.5.2.5
The final answer is 1.
1
1
1
Step 6.6
List the points in a table.
xf(x)-31π2-30π-3-13π2-302π-31
xf(x)-31π2-30π-3-13π2-302π-31
Step 7
The trig function can be graphed using the amplitude, period, phase shift, vertical shift, and the points.
Amplitude: 1
Period: 2π
Phase Shift: -3 (3 to the left)
Vertical Shift: None
xf(x)-31π2-30π-3-13π2-302π-31
Step 8