Enter a problem...
Trigonometry Examples
tan(5π3-π4)tan(5π3−π4)
Step 1
To write 5π3 as a fraction with a common denominator, multiply by 44.
tan(5π3⋅44-π4)
Step 2
To write -π4 as a fraction with a common denominator, multiply by 33.
tan(5π3⋅44-π4⋅33)
Step 3
Step 3.1
Multiply 5π3 by 44.
tan(5π⋅43⋅4-π4⋅33)
Step 3.2
Multiply 3 by 4.
tan(5π⋅412-π4⋅33)
Step 3.3
Multiply π4 by 33.
tan(5π⋅412-π⋅34⋅3)
Step 3.4
Multiply 4 by 3.
tan(5π⋅412-π⋅312)
tan(5π⋅412-π⋅312)
Step 4
Combine the numerators over the common denominator.
tan(5π⋅4-π⋅312)
Step 5
Step 5.1
Multiply 4 by 5.
tan(20π-π⋅312)
Step 5.2
Multiply 3 by -1.
tan(20π-3π12)
Step 5.3
Subtract 3π from 20π.
tan(17π12)
tan(17π12)
Step 6
Step 6.1
Rewrite 17π12 as an angle where the values of the six trigonometric functions are known divided by 2.
tan(17π62)
Step 6.2
Apply the tangent half-angle identity.
±√1-cos(17π6)1+cos(17π6)
Step 6.3
Change the ± to + because tangent is positive in the third quadrant.
√1-cos(17π6)1+cos(17π6)
Step 6.4
Simplify √1-cos(17π6)1+cos(17π6).
Step 6.4.1
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
√1-cos(5π6)1+cos(17π6)
Step 6.4.2
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
√1--cos(π6)1+cos(17π6)
Step 6.4.3
The exact value of cos(π6) is √32.
√1--√321+cos(17π6)
Step 6.4.4
Multiply --√32.
Step 6.4.4.1
Multiply -1 by -1.
√1+1√321+cos(17π6)
Step 6.4.4.2
Multiply √32 by 1.
√1+√321+cos(17π6)
√1+√321+cos(17π6)
Step 6.4.5
Write 1 as a fraction with a common denominator.
√22+√321+cos(17π6)
Step 6.4.6
Combine the numerators over the common denominator.
√2+√321+cos(17π6)
Step 6.4.7
Subtract full rotations of 2π until the angle is greater than or equal to 0 and less than 2π.
√2+√321+cos(5π6)
Step 6.4.8
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.
√2+√321-cos(π6)
Step 6.4.9
The exact value of cos(π6) is √32.
√2+√321-√32
Step 6.4.10
Write 1 as a fraction with a common denominator.
√2+√3222-√32
Step 6.4.11
Combine the numerators over the common denominator.
√2+√322-√32
Step 6.4.12
Multiply the numerator by the reciprocal of the denominator.
√2+√32⋅22-√3
Step 6.4.13
Cancel the common factor of 2.
Step 6.4.13.1
Cancel the common factor.
√2+√32⋅22-√3
Step 6.4.13.2
Rewrite the expression.
√(2+√3)12-√3
√(2+√3)12-√3
Step 6.4.14
Multiply 12-√3 by 2+√32+√3.
√(2+√3)(12-√3⋅2+√32+√3)
Step 6.4.15
Multiply 12-√3 by 2+√32+√3.
√(2+√3)2+√3(2-√3)(2+√3)
Step 6.4.16
Expand the denominator using the FOIL method.
√(2+√3)2+√34+2√3-2√3-√32
Step 6.4.17
Simplify.
√(2+√3)2+√31
Step 6.4.18
Divide 2+√3 by 1.
√(2+√3)(2+√3)
Step 6.4.19
Expand (2+√3)(2+√3) using the FOIL Method.
Step 6.4.19.1
Apply the distributive property.
√2(2+√3)+√3(2+√3)
Step 6.4.19.2
Apply the distributive property.
√2⋅2+2√3+√3(2+√3)
Step 6.4.19.3
Apply the distributive property.
√2⋅2+2√3+√3⋅2+√3√3
√2⋅2+2√3+√3⋅2+√3√3
Step 6.4.20
Simplify and combine like terms.
Step 6.4.20.1
Simplify each term.
Step 6.4.20.1.1
Multiply 2 by 2.
√4+2√3+√3⋅2+√3√3
Step 6.4.20.1.2
Move 2 to the left of √3.
√4+2√3+2⋅√3+√3√3
Step 6.4.20.1.3
Combine using the product rule for radicals.
√4+2√3+2√3+√3⋅3
Step 6.4.20.1.4
Multiply 3 by 3.
√4+2√3+2√3+√9
Step 6.4.20.1.5
Rewrite 9 as 32.
√4+2√3+2√3+√32
Step 6.4.20.1.6
Pull terms out from under the radical, assuming positive real numbers.
√4+2√3+2√3+3
√4+2√3+2√3+3
Step 6.4.20.2
Add 4 and 3.
√7+2√3+2√3
Step 6.4.20.3
Add 2√3 and 2√3.
√7+4√3
√7+4√3
√7+4√3
√7+4√3
Step 7
The result can be shown in multiple forms.
Exact Form:
√7+4√3
Decimal Form:
3.73205080…